Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model

被引:18
|
作者
Pissadaki, Eleftheria Kyriaki [1 ,2 ]
Sidiropoulou, Kyriaki [2 ]
Reczko, Martin [3 ]
Poirazi, Panayiota [2 ]
机构
[1] Univ Crete, Dept Biol, Iraklion, Crete, Greece
[2] Fdn Res & Technol, Inst Mol Biol & Biotechnol, Iraklion, Crete, Greece
[3] Alexander Fleming Biomed Sci Res Ctr, Inst Mol Oncol, Athens, Greece
关键词
SPATIAL WORKING-MEMORY; DORSAL HIPPOCAMPAL SUBREGIONS; RETINAL GANGLION-CELLS; PRIMARY VISUAL-CORTEX; LONG-TERM-MEMORY; ENTORHINAL CORTEX; NMDA RECEPTORS; IN-VITRO; PREFRONTAL CORTEX; CORTICAL-NEURONS;
D O I
10.1371/journal.pcbi.1001038
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites
    Golding, NL
    Mickus, TJ
    Katz, Y
    Kath, WL
    Spruston, N
    JOURNAL OF PHYSIOLOGY-LONDON, 2005, 568 (01): : 69 - 82
  • [32] Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing
    Dvorak-Carbone, H
    Schuman, EM
    JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (06) : 3213 - 3222
  • [33] Cordycepin decreases activity of hippocampal CA1 pyramidal neuron through membrane hyperpolarization
    Yao, Li-Hua
    Li, Chu-Hua
    Yan, Wen-Wen
    Huang, Jun-Ni
    Liu, Wen-Xiao
    Xiao, Peng
    NEUROSCIENCE LETTERS, 2011, 503 (03) : 256 - 260
  • [34] Encoding and Retrieval in a Model of the Hippocampal CA1 Microcircuit
    Cutsuridis, Vassilis
    Cobb, Stuart
    Graham, Bruce P.
    HIPPOCAMPUS, 2010, 20 (03) : 423 - 446
  • [35] Encoding and retrieval in a CA1 microcircuit model of the hippocampus
    Cutsuridis, Vassilis
    Cobb, Stuart
    Graham, Bruce P.
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 238 - +
  • [36] Spatio-temporal patterns of action potentials in a single neuron
    Jimbo, Y
    Torimitsu, K
    Kulagina, IB
    Korogod, SM
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 : 383 - 383
  • [37] Modeling the spatio-temporal electrical activity of neuron sources
    Hoffmann K.
    Popov A.M.
    Pevtsov S.E.
    Fedulova I.A.
    Computational Mathematics and Modeling, 2005, 16 (3) : 235 - 247
  • [38] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433
  • [39] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [40] PSTNet: Crowd Flow Prediction by Pyramidal Spatio-Temporal Network
    Yang, Enze
    Liu, Shuoyan
    Liu, Yuxin
    Fang, Kai
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (10) : 1780 - 1783