Pitfalls of Machine Learning-Based Personnel Selection Fairness, Transparency, and Data Quality

被引:14
|
作者
Goretzko, David [1 ]
Finja Israel, Laura Sophia [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Psychol, Leopoldstr 13, D-80802 Munich, Germany
关键词
machine learning; personnel selection; validity; interpretability; DIFFERENTIAL PREDICTION; RANGE RESTRICTION; TEST BIAS; PERFORMANCE;
D O I
10.1027/1866-5888/a000287
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
In recent years, machine learning (ML) modeling (often referred to as artificial intelligence) has become increasingly popular for personnel selection purposes. Numerous organizations use ML-based procedures for screening large candidate pools, while some companies try to automate the hiring process as far as possible. Since ML models can handle large sets of predictor variables and are therefore able to incorporate many different data sources (often more than common procedures can consider), they promise a higher predictive accuracy and objectivity in selecting the best candidate than traditional personal selection processes. However, there are some pitfalls and challenges that have to be taken into account when using ML for a sensitive issue as personnel selection. In this paper, we address these major challenges - namely the definition of a valid criterion, transparency regarding collected data and decision mechanisms, algorithmic fairness, changing data conditions, and adequate performance evaluation - and discuss some recommendations for implementing fair, transparent, and accurate ML-based selection algorithms.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [31] Transparent Quality Optimization for Machine Learning-Based Regression in Neurology
    Wendt, Karsten
    Trentzsch, Katrin
    Haase, Rocco
    Weidemann, Marie Luise
    Weidemann, Robin
    Assmann, Uwe
    Ziemssen, Tjalf
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (06):
  • [32] Machine learning-based predictive modelling for the enhancement of wine quality
    Jain, Khushboo
    Kaushik, Keshav
    Gupta, Sachin Kumar
    Mahajan, Shubham
    Kadry, Seifedine
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [33] Machine learning-based predictive modelling for the enhancement of wine quality
    Khushboo Jain
    Keshav Kaushik
    Sachin Kumar Gupta
    Shubham Mahajan
    Seifedine Kadry
    Scientific Reports, 13
  • [34] Guidelines for Quality Assurance of Machine Learning-Based Artificial Intelligence
    Fujii, Gaku
    Hamada, Koichi
    Ishikawa, Fuyuki
    Masuda, Satoshi
    Matsuya, Mineo
    Myojin, Tomoyuki
    Nishi, Yasuharu
    Ogawa, Hideto
    Toku, Takahiro
    Tokumoto, Susumu
    Tsuchiya, Kazunori
    Ujita, Yasuhiro
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2020, 30 (11-12) : 1589 - 1606
  • [35] Machine Learning-Based A Comparative Analysis for Air Quality Prediction
    Utku, Anil
    Can, Umit
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [36] Prediction of software quality with Machine Learning-Based ensemble methods
    Ceran A.A.
    Ar Y.
    Tanrıöver Ö.Ö.
    Seyrek Ceran S.
    Materials Today: Proceedings, 2023, 81 : 18 - 25
  • [37] A Machine Learning-Based Framework for Dynamic Selection of Congestion Control Algorithms
    Zhou, Jianer
    Qiu, Xinyi
    Li, Zhenyu
    Li, Qing
    Tyson, Gareth
    Duan, Jingpu
    Wang, Yi
    Pan, Heng
    Wu, Qinghua
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2023, 31 (04) : 1566 - 1581
  • [38] A machine learning-based nested partitions framework for angle selection in radiotherapy
    Gao, Siyang
    Meyer, Robert
    D'Souza, Warren
    Shi, Leyuan
    Zhang, Hao
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (06): : 1169 - 1188
  • [39] Application of Machine Learning-Based Classification to Genomic Selection and Performance Improvement
    Qiu, Zhixu
    Cheng, Qian
    Song, Jie
    Tang, Yunjia
    Ma, Chuang
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT I, 2016, 9771 : 412 - 421
  • [40] A machine learning-based decision support framework for energy storage selection
    Li, Lanyu
    Zhou, Tianxun
    Li, Jiali
    Wang, Xiaonan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 181 : 412 - 422