Biosequence similarity search on the Mercury system

被引:17
|
作者
Krishnamurthy, Praveen [1 ]
Buhler, Jeremy [1 ]
Chamberlain, Roger [1 ]
Franklin, Mark [1 ]
Gyang, Kwame [1 ]
Jacob, Arpith [1 ]
Lancaster, Joseph [1 ]
机构
[1] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63130 USA
来源
JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2007年 / 49卷 / 01期
关键词
DNA sequencing; comparative annotation; biosequence;
D O I
10.1007/s11265-007-0087-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Biosequence similarity search is an important application in modern molecular biology. Search algorithms aim to identify sets of sequences whose extensional similarity suggests a common evolutionary origin or function. The most widely used similarity search tool for biosequences is BLAST, a program designed to compare query sequences to a database. Here, we present the design of BLASTN, the version of BLAST that searches DNA sequences, on the Mercury system, an architecture that supports high-volume, high-throughput data movement off a data store and into reconfigurable hardware. An important component of application deployment on the Mercury system is the functional decomposition of the application onto both the reconfigurable hardware and the traditional processor. Both the Mercury BLASTN application design and its performance analysis are described.
引用
收藏
页码:101 / 121
页数:21
相关论文
共 50 条
  • [41] Supervised Quantization for Similarity Search
    Wang, Xiaojuan
    Zhang, Ting
    Qi, Guo-Jun
    Tang, Jinhui
    Wang, Jingdong
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2018 - 2026
  • [42] Control Variates for Similarity Search
    Chew, Jeremy
    Kang, Keegan
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, 2021, 13019 : 468 - 479
  • [43] Continuously Adaptive Similarity Search
    Zhang, Huayi
    Cao, Lei
    Yan, Yizhou
    Madden, Samuel
    Rundensteiner, Elke A.
    SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, : 2601 - 2616
  • [44] Statistical quantization for similarity search
    Wang, Qi
    Zhu, Guokang
    Yuan, Yuan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 124 : 22 - 30
  • [45] Efficient algorithms for similarity search
    Rajasekaran, S
    Hu, Y
    Luo, J
    Nick, H
    Pardalos, PM
    Sahni, S
    Shaw, G
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2001, 5 (01) : 125 - 132
  • [46] Similarity Pruning in PrOM Search
    Donkers, H. H. L. M.
    van den Herik, H. Jaap
    Uiterwijk, Jos W. H. M.
    ADVANCES IN COMPUTER GAMES, 2006, 4250 : 57 - +
  • [47] Similarity search in seismological signals
    Angeles-Yreta, A
    Solís-Estrella, H
    Landassuri-Moreno, V
    Figueroa-Nazuno, J
    PROCEEDINGS OF THE FIFTH MEXICAN INTERNATIONAL CONFERENCE IN COMPUTER SCIENCE (ENC 2004), 2004, : 50 - 56
  • [48] Efficient Algorithms for Similarity Search
    S. Rajasekaran
    Y. Hu
    J. Luo
    H. Nick
    P.M. Pardalos
    S. Sahni
    G. Shaw
    Journal of Combinatorial Optimization, 2001, 5 : 125 - 132
  • [49] Distributed Trajectory Similarity Search
    Xie, Dong
    Li, Feifei
    Phillips, Jeff M.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (11): : 1478 - 1489
  • [50] Similarity search in trajectory Databases
    Pelekis, Nikos
    Kopanakis, Ioannis
    Marketos, Gerasimos
    Ntoutsi, Irene
    Andrienko, Gennady
    Theodoridis, Yannis
    TIME 2007: 14TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS, 2007, : 129 - +