Enhanced Stabilization of Soil Organic Carbon by Growing Leguminous Green Manure on the Loess Plateau of China

被引:19
|
作者
Yao, Zhiyuan [1 ,2 ]
Xu, Qian [1 ]
Chen, Yupei [1 ]
Liu, Na [1 ]
Huang, Lidong [2 ,3 ]
Zhao, Ying [2 ,4 ]
Zhang, Dabin [1 ]
Li, Yangyang [5 ]
Zhang, Suiqi [5 ]
Cao, Weidong [6 ]
Zhai, Bingnian [1 ]
Wang, Zhaohui [1 ]
Adl, Sina [2 ]
Gao, Yajun [1 ,7 ]
机构
[1] Northwest A&F Univ, Coll Nat Resources & Environm, Yangling 712100, Shaanxi, Peoples R China
[2] Univ Saskatchewan, Dept Soil Sci, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada
[3] Nanjing Univ Informat S&T, Dept Agr Resources & Environm, Nanjing 210044, Jiangsu, Peoples R China
[4] Ludong Univ, Coll Resources & Environm Engn, Yantai 264025, Peoples R China
[5] CAS & MWR, Inst Soil & Water Conservat, Yangling 712100, Shaanxi, Peoples R China
[6] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
[7] Minist Agr, Key Lab Plant Nutr & Agroenvironm Northwest China, Yangling 712100, Shaanxi, Peoples R China
关键词
LONG-TERM FERTILIZATION; AGGREGATE-ASSOCIATED CARBON; CROPPING SYSTEMS; TOTAL NITROGEN; CLIMATE-CHANGE; COVER CROPS; MATTER; SEQUESTRATION; STABILITY; TILLAGE;
D O I
10.2136/sssaj2019.03.0089
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Evaluating the impacts of growing leguminous green manure (LGM) on soil organic carbon (SOC) stabilization is crucial to evaluate the sustainability of this management practice. To clarify this, we measured organic carbon (OC) fractions and used protected C to estimate the stability of SOC. The field study was a split-plot design with four main treatments: summer fallow-winter wheat (Triticum aestivum L.) (FW) as control and growing LGM to replace Huai bean (Glycine soja Sieb. et Zucc)-winter wheat (HW), soybean [Glycine max (L.) Merr.]-winter wheat, and mung bean [Vigna radiata (L.) Wilczek]-winter wheat. The subtreatments were four synthetic N rates applied before sowing winter wheat. Physical fractionation was used to isolate different OC fractions. Among them, the intra-microaggregate fine particulate OC and mineral-associated OC are protected C. The mean weight diameter at the 0- to 10-cm soil of HW was significantly increased compared with FW. The SOC content of the bulk soil for the LGM treatments was increased by 0.93 to 1.18 g kg(-1) and 0.33 to 1.04 g kg(-1) at depths of 0 to 10 cm and 10 to 20 cm, respectively, compared with FW. The protected C accounted for 69 to 86% of the total SOC increase. Moreover, only the protected C was significantly and positively correlated with the SOC increase. In conclusion, growing LGM to replace summer fallow can increase the quantity and stability of SOC by increasing the content of protected C, suggesting that the proposed management practice could promote sustainable agriculture.
引用
下载
收藏
页码:1722 / 1732
页数:11
相关论文
共 50 条
  • [41] Effect of Rotational Tillage on Soil Aggregates, Organic Carbon and Nitrogen in the Loess Plateau Area of China
    Hou Xian-Qing
    Li Rong
    Jia Zhi-Kuan
    Han Qing-Fang
    PEDOSPHERE, 2013, 23 (04) : 542 - 548
  • [42] The potential of cropland soil carbon sequestration in the Loess Plateau, China
    Zeng Tang
    Zhibiao Nan
    Mitigation and Adaptation Strategies for Global Change, 2013, 18 : 889 - 902
  • [43] Variations of soil organic carbon fractions in response to conservative vegetation successions on the Loess Plateau of China
    Ghani, Muhammad Imran
    Wang, Jing
    Li, Peng
    Pathan, Shamina Imran
    Sial, Tanveer Ali
    Datta, Rahul
    Mokhtar, Ali
    Ali, Esmat F.
    Rinklebe, Joerg
    Shaheen, Sabry M.
    Liu, Mengyun
    Abdelrahman, Hamada
    INTERNATIONAL SOIL AND WATER CONSERVATION RESEARCH, 2023, 11 (03) : 561 - 571
  • [44] Variations in soil organic carbon storage and stability with vegetation restoration stages on the Loess Plateau of China
    Wang, Anning
    Zha, Tonggang
    Zhang, Zhiqiang
    CATENA, 2023, 228
  • [45] The effects of ecological construction and topography on soil organic carbon and total nitrogen in the Loess Plateau of China
    Shi, Peng
    Duan, Jinxiao
    Zhang, Yan
    Li, Peng
    Wang, Xiukang
    Li, Zhanbin
    Xiao, Lie
    Xu, Guoce
    Lu, Kexin
    Cheng, Shengdong
    Ren, Zongping
    Zhang, Yi
    Yang, Wengang
    ENVIRONMENTAL EARTH SCIENCES, 2019, 78 (01)
  • [46] Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China
    Fu, Xiaoli
    Shao, Mingan
    Wei, Xiaorong
    Horton, Robert
    GEODERMA, 2010, 155 (1-2) : 31 - 35
  • [47] The effects of ecological construction and topography on soil organic carbon and total nitrogen in the Loess Plateau of China
    Peng Shi
    Jinxiao Duan
    Yan Zhang
    Peng Li
    Xiukang Wang
    Zhanbin Li
    Lie Xiao
    Guoce Xu
    Kexin Lu
    Shengdong Cheng
    Zongping Ren
    Yi Zhang
    Wengang Yang
    Environmental Earth Sciences, 2019, 78
  • [48] Conventional tillage improves the storage of soil organic carbon in heavy fractions in the Loess Plateau, China
    Huige Han
    Xudong Li
    Decao Niu
    Sharon J. Hall
    Ding Guo
    Changgui Wan
    Jennifer K. Learned
    Hua Fu
    Journal of Arid Land, 2015, 7 : 636 - 643
  • [49] Conventional tillage improves the storage of soil organic carbon in heavy fractions in the Loess Plateau, China
    HAN Huige
    LI Xudong
    NIU Decao
    Sharon J HALL
    GUO Ding
    WAN Changgui
    Jennifer K LEARNED
    FU Hua
    Journal of Arid Land, 2015, 7 (05) : 636 - 643
  • [50] Modeling Soil Organic Carbon Loss in Relation to Flow Velocity and Slope on the Loess Plateau of China
    Li, Z. W.
    Liu, L.
    Nie, X. D.
    Chang, X. F.
    Liu, C.
    Xiao, H. B.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2016, 80 (05) : 1341 - 1351