Advancement in porous adsorbents for post-combustion CO2 capture

被引:144
|
作者
Modak, Arindam [1 ]
Jana, Subhra [1 ,2 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Tech Res Ctr, Block JD,Sect 3, Kolkata 700106, India
[2] SN Bose Natl Ctr Basic Sci, Dept Chem Biol & Macromol Sci, Block JD,Sect 3, Kolkata 700106, India
关键词
Metal-organic frameworks (MOFs); Zeolitic imidazolate frameworks (ZIF); Porous organic polymers (POPs); Covalent organic frameworks (COFs); Functional oxides; CO2; capture; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE CAPTURE; ZEOLITIC IMIDAZOLATE FRAMEWORKS; PERIODIC MESOPOROUS ORGANOSILICA; CONJUGATED MICROPOROUS POLYMERS; TRIAZINE-BASED FRAMEWORKS; HIGH THERMAL-STABILITY; GAS-STORAGE; ADSORPTION PROPERTIES; AROMATIC FRAMEWORKS;
D O I
10.1016/j.micromeso.2018.09.018
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
One of the foremost environmental concerns of our age is the growing concentration of atmospheric CO2 owing to the fossil fuel, power plants, chemical processing and deforestation. High CO2 level in atmosphere induces global warming which is considered as one of the major long lasting problems in the twenty-first century and thus intensive efforts are necessary to curb CO2 from entering into carbon cycle. To address this issue, several promising porous adsorbents are developed to partially mitigate the global climate problems. With increasing substantial interest on high surface area metal-organic frameworks (MOFs), porous organic polymers (POPs), covalent organic frameworks (COFs) and nanoporous oxides, we believe, they could be promising for carbon capture due to their high porosity, presence of ultra-small pores, structural diversity, high stability and excellent recyclability. This review highlights the recent progresses on MOFs, POPs, COFs and mesoporous oxides as CO2 adsorbent and illustrates their CO2 separation selectivity and enthalpy of interaction etc. Finally, we conclude with the viewpoint on the future developments in the context of promising adsorbents for CO2 capture, followed by its transformation to value added products and the potential drawbacks which are associated with them.
引用
收藏
页码:107 / 132
页数:26
相关论文
共 50 条
  • [21] Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption
    Hedin, Niklas
    Andersson, Linnea
    Bergstrom, Lennart
    Yan, Jinyue
    [J]. APPLIED ENERGY, 2013, 104 : 418 - 433
  • [22] Molecular simulations of nitrogen-doped hierarchical carbon adsorbents for post-combustion CO2 capture
    Psarras, Peter
    He, Jiajun
    Wilcox, Jennifer
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (41) : 28747 - 28758
  • [23] Biomass-based adsorbents for post-combustion CO2 capture: Preparation, performances, modeling, and assessment
    Zhu, Shaoliang
    Zhao, Bingtao
    Zhang, Haonan
    Su, Yaxin
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 328
  • [24] The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review
    Peiyu Zhao
    Guojie Zhang
    Huangyu Yan
    Yuqiong Zhao
    [J]. Chinese Journal of Chemical Engineering, 2021, 35 (07) : 17 - 43
  • [25] Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2 capture
    Choi, Woosung
    Park, Jongbeom
    Kim, Chaehoon
    Choi, Minkee
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 408
  • [26] The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review
    Zhao, Peiyu
    Zhang, Guojie
    Yan, Huangyu
    Zhao, Yuqiong
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 35 : 17 - 43
  • [27] Biomass-based adsorbents for post-combustion CO2 capture: Preparation, performances, modeling, and assessment
    Zhu, Shaoliang
    Zhao, Bingtao
    Zhang, Haonan
    Su, Yaxin
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 328
  • [28] Highly efficient absorbents for post-combustion CO2 capture
    Shim, Jae-Goo
    Kim, Jun-Han
    Lee, Ji Hyun
    Jang, Kyung-Ryong
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 779 - 782
  • [29] Thermal degradation of morpholine in CO2 post-combustion capture
    Ogidi, Michael O.
    Thompson, Warren A.
    Maroto-Valer, M. Mercedes
    [J]. 13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1033 - 1037
  • [30] Evaluation of the cyclic capacity of low-cost carbon adsorbents for post-combustion CO2 capture
    Plaza, M. G.
    Pevida, C.
    Pis, J. J.
    Rubiera, F.
    [J]. 10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1228 - 1234