Shedding Light on Variational Autoencoders

被引:1
|
作者
Ruiz Vargas, J. C. [1 ]
Novaes, S. F. [1 ]
Cobe, R. [1 ]
Iope, R. [1 ]
Stanzani, S. [1 ]
Tomei, T. R. [1 ]
机构
[1] Sao Paulo State Univ Unesp, Ctr Sci Comp NCC, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Variational Autoencoders; Machine Learning; Tensorflow; Fresnel diffraction;
D O I
10.1109/CLEI.2018.00043
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep neural networks provide the canvas to create models of millions of parameters to fit distributions involving an equally large number of random variables. The contribution of this study is twofold. First, we introduce a diffraction dataset containing computer-based simulations of a Young's interference experiment. Then, we demonstrate the adeptness of variational autoencoders to learn diffraction patterns and extract a latent feature that correlates with the physical wavelength.
引用
收藏
页码:294 / 298
页数:5
相关论文
共 50 条
  • [21] An Evolutionary Approach to Variational Autoencoders
    Hajewski, Jeff
    Oliveira, Suely
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 71 - 77
  • [22] Disentangling Disentanglement in Variational Autoencoders
    Mathieu, Emile
    Rainforth, Tom
    Siddharth, N.
    Teh, Yee Whye
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [23] A Geometric Perspective on Variational Autoencoders
    Chadebec, Clement
    Allassonniere, Stephanie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [24] Rethinking Controllable Variational Autoencoders
    Shao, Huajie
    Yang, Yifei
    Lin, Haohong
    Lin, Longzhong
    Chen, Yizhuo
    Yang, Qinmin
    Zhao, Han
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19228 - 19237
  • [25] Recursive Inference for Variational Autoencoders
    Kim, Minyoung
    Pavlovic, Vladimir
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [26] EXPLORING VARIATIONAL AUTOENCODERS FOR LEMMATIZATION
    Rebeja, Petru
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE LINGUISTIC RESOURCES AND TOOLS FOR NATURAL LANGUAGE PROCESSING, 2020, : 77 - 82
  • [27] Variational Autoencoders: A Harmonic Perspective
    Camuto, Alexander
    Willetts, Matthew
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [28] Certifiably Robust Variational Autoencoders
    Barrett, Ben
    Camuto, Alexander
    Willetts, Matthew
    Rainforth, Tom
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [29] Variational Clustering: Leveraging Variational Autoencoders for Image Clustering
    Prasad, Vignesh
    Das, Dipanjan
    Bhowmick, Brojeshwar
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [30] Training Variational Autoencoders with Buffered Stochastic Variational Inference
    Shu, Rui
    Bui, Hung H.
    Whang, Jay
    Ermon, Stefano
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89