Gradient Statistics Aware Power Control for Over-the-Air Federated Learning

被引:84
|
作者
Zhang, Naifu [1 ]
Tao, Meixia [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Fading channels; Training; Computational modeling; Atmospheric modeling; Wireless networks; Power control; Power transmission; Federated learning; over-the-air computation; power control; fading channel;
D O I
10.1109/TWC.2021.3065748
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) is a promising technique that enables many edge devices to train a machine learning model collaboratively in wireless networks. By exploiting the superposition nature of wireless waveforms, over-the-air computation (AirComp) can accelerate model aggregation and hence facilitate communication-efficient FL. Due to channel fading, power control is crucial in AirComp. Prior works assume that the signals to be aggregated from each device, i.e., local gradients have identical statistics. In FL, however, gradient statistics vary over both training iterations and feature dimensions, and are unknown in advance. This paper studies the power control problem for over-the-air FL by taking gradient statistics into account. The goal is to minimize the aggregation error by optimizing the transmit power at each device subject to average power constraints. We obtain the optimal policy in closed form when gradient statistics are given. Notably, we show that the optimal transmit power is continuous and monotonically decreases with the squared multivariate coefficient of variation (SMCV) of gradient vectors. We then propose a method to estimate gradient statistics with negligible communication cost. Experimental results demonstrate that the proposed gradient-statistics-aware power control achieves higher test accuracy than the existing schemes for a wide range of scenarios.
引用
下载
收藏
页码:5115 / 5128
页数:14
相关论文
共 50 条
  • [41] Asynchronous Federated Learning via Over-the-air Computation
    Zheng, Zijian
    Deng, Yansha
    Liu, Xiaonan
    Nallanathan, Arumugam
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1345 - 1350
  • [42] Federated Edge Learning With Misaligned Over-the-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 3951 - 3964
  • [43] Over-the-Air Federated Learning from Heterogeneous Data
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina
    IEEE Transactions on Signal Processing, 2021, 69 : 3796 - 3811
  • [44] Optimized Power Control for Over-the-Air Federated Averaging With Data Privacy Guarantee
    Jiang, Jiamo
    Han, Kaifeng
    Du, Ying
    Zhu, Guangxu
    Wang, Zhiqin
    Cui, Shuguang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 2728 - 2733
  • [45] Over-the-Air Federated Learning From Heterogeneous Data
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3796 - 3811
  • [46] Over-the-Air Federated Edge Learning With Hierarchical Clustering
    Aygün, Ozan
    Kazemi, Mohammad
    Gündüz, Deniz
    Duman, Tolga M.
    IEEE Transactions on Wireless Communications, 2024, 23 (12) : 17856 - 17871
  • [47] ROBUST FEDERATED LEARNING VIA OVER-THE-AIR COMPUTATION
    Sifaou, Houssem
    Li, Geoffrey Ye
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [48] Over-the-Air Federated Multi-Task Learning
    Ma, Haoming
    Yuan, Xiaojun
    Fan, Dian
    Ding, Zhi
    Wang, Xin
    Fang, Jun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5184 - 5189
  • [49] Federated Edge Learning with Misaligned Over-The-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 236 - 240
  • [50] Boosting Fairness and Robustness in Over-the-Air Federated Learning
    Oeksuez, Halil Yigit
    Molinari, Fabio
    Sprekeler, Henning
    Raisch, Joerg
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 682 - 687