Gradient Statistics Aware Power Control for Over-the-Air Federated Learning

被引:84
|
作者
Zhang, Naifu [1 ]
Tao, Meixia [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Fading channels; Training; Computational modeling; Atmospheric modeling; Wireless networks; Power control; Power transmission; Federated learning; over-the-air computation; power control; fading channel;
D O I
10.1109/TWC.2021.3065748
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) is a promising technique that enables many edge devices to train a machine learning model collaboratively in wireless networks. By exploiting the superposition nature of wireless waveforms, over-the-air computation (AirComp) can accelerate model aggregation and hence facilitate communication-efficient FL. Due to channel fading, power control is crucial in AirComp. Prior works assume that the signals to be aggregated from each device, i.e., local gradients have identical statistics. In FL, however, gradient statistics vary over both training iterations and feature dimensions, and are unknown in advance. This paper studies the power control problem for over-the-air FL by taking gradient statistics into account. The goal is to minimize the aggregation error by optimizing the transmit power at each device subject to average power constraints. We obtain the optimal policy in closed form when gradient statistics are given. Notably, we show that the optimal transmit power is continuous and monotonically decreases with the squared multivariate coefficient of variation (SMCV) of gradient vectors. We then propose a method to estimate gradient statistics with negligible communication cost. Experimental results demonstrate that the proposed gradient-statistics-aware power control achieves higher test accuracy than the existing schemes for a wide range of scenarios.
引用
下载
收藏
页码:5115 / 5128
页数:14
相关论文
共 50 条
  • [1] Gradient Statistics Aware Power Control for Over-the-Air Federated Learning in Fading Channels
    Zhang, Naifu
    Tao, Meixia
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,
  • [2] Optimized Power Control for Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Zhu, Guangxu
    Xu, Jie
    Cui, Shuguang
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [3] Channel and Gradient-Importance Aware Device Scheduling for Over-the-Air Federated Learning
    Sun, Yuchang
    Lin, Zehong
    Mao, Yuyi
    Jin, Shi
    Zhang, Jun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 6905 - 6920
  • [4] Optimized Power Control Design for Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Zhu, Guangxu
    Xu, Jie
    Wang, Zhiqin
    Cui, Shuguang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) : 342 - 358
  • [5] Gradient and Channel Aware Dynamic Scheduling for Over-the-Air Computation in Federated Edge Learning Systems
    Du, Jun
    Jiang, Bingqing
    Jiang, Chunxiao
    Shi, Yuanming
    Han, Zhu
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 1035 - 1050
  • [6] Cohort-based Power Scaling and Gradient Recovery for Over-The-Air Federated Learning
    Terai, Koudai
    Chiang, Yi-Han
    Lin, Hai
    Ji, Yusheng
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [7] Energy Harvesting Aware Client Selection for Over-the-Air Federated Learning
    Chen, Caijuan
    Chiang, Yi-Han
    Lin, Hai
    Lui, John C. S.
    Ji, Yusheng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5069 - 5074
  • [8] Over-the-Air Federated Graph Learning
    Wang, Zixin
    Zhou, Yong
    Shi, Yuanming
    IEEE Transactions on Wireless Communications, 2024, 23 (12) : 18669 - 18683
  • [9] Over-the-Air Clustered Federated Learning
    Sami, Hasin Us
    Guler, Basak
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7877 - 7893
  • [10] Federated Learning Over-the-Air by Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9143 - 9156