Complexity of sequential implementation of partial Boolean functions

被引:0
|
作者
Sholomov, L. A. [1 ]
机构
[1] Russian Acad Sci, Inst Syst Anal, Moscow 117312, Russia
基金
俄罗斯基础研究基金会;
关键词
5;
D O I
10.1134/S1064562407030313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sequential implementation of systems of Boolean functions by Boolean circuits over an arbitrary finite basis are studied. A circuit implements a system of partial functions if it implements some completely defined system that is a specification (extension) of the initial system. In the sequential implementation of a system, its functions are implemented in turn and every function can use the outputs of the gates of the circuit constructed for the previous functions. The theorem proved that in the case D(f) ⊇ D(g), the sequential implementation of pairs (f', g') from ℜ in the order f', g' gives asymptotically the same complexity as simultaneous implementation.
引用
收藏
页码:449 / 452
页数:4
相关论文
共 50 条
  • [21] COMPLEXITY HIERARCHIES FOR BOOLEAN FUNCTIONS
    MCCOLL, WF
    ACTA INFORMATICA, 1978, 11 (01) : 71 - 77
  • [22] Local complexity of Boolean functions
    Chashkin, A
    DISCRETE APPLIED MATHEMATICS, 2004, 135 (1-3) : 55 - 64
  • [23] COMPOSITIONAL COMPLEXITY OF BOOLEAN FUNCTIONS
    ABELSON, H
    EHRENFEUCHT, A
    FICKETT, J
    MYCIELSKI, J
    DISCRETE APPLIED MATHEMATICS, 1982, 4 (01) : 1 - 10
  • [24] On complexity of calculating the values of partial derivative of Boolean functions, realized with Zhegalkin polynomials
    Aleksejchuk, A.N.
    Kibernetika i Sistemnyj Analiz, 2001, (05): : 30 - 38
  • [25] Circuit Complexity and Multiplicative Complexity of Boolean Functions
    Kojevnikov, Arist
    Kulikov, Alexander S.
    PROGRAMS, PROOFS, PROCESSES, 2010, 6158 : 239 - 245
  • [26] On the Modulo Degree Complexity of Boolean Functions
    Li, Qian
    Sun, Xiaoming
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 384 - 395
  • [27] On the modulo degree complexity of Boolean functions
    Li, Qian
    Sun, Xiaoming
    THEORETICAL COMPUTER SCIENCE, 2020, 818 (818) : 32 - 40
  • [28] The Complexity of Boolean Functions in Different Characteristics
    Parikshit Gopalan
    Amir Shpilka
    Shachar Lovett
    computational complexity, 2010, 19 : 235 - 263
  • [29] On intervals of partial clones of Boolean partial functions
    Haddad, L
    Simons, GE
    33RD INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2003, : 315 - 320
  • [30] THE CONJUNCTIVE COMPLEXITY OF QUADRATIC BOOLEAN FUNCTIONS
    LENZ, K
    WEGENER, I
    THEORETICAL COMPUTER SCIENCE, 1991, 81 (02) : 257 - 268