Multivariate orthogonal polynomials: Quantum decomposition, deficiency rank and support of measure

被引:0
|
作者
Dhahri, Ameur [1 ]
Obata, Nobuaki [2 ]
Yoo, Hyun Jae [3 ,4 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
[3] Hankyong Natl Univ, Dept Appl Math, 327 Jungang Ro, Anseong 17579, Gyeonggi Do, South Korea
[4] Hankyong Natl Univ, Inst Integrated Math Sci, 327 Jungang Ro, Anseong 17579, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Multivariate orthogonal polynomials; Quantum decomposition; Favard theorem; Deficiency rank; Support of measure; RECURSION FORMULAS;
D O I
10.1016/j.jmaa.2019.123775
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the multivariate orthogonal polynomials based on the theory of interacting Fock spaces. Our framework is on the same stream line of the recent paper by Accardi, Barhoumi, and Dhahri [1]. The (classical) coordinate variables are decomposed into non-commuting (quantum) operators called creation, annihilation, and preservation operators, in the interacting Fock spaces. Getting the commutation relations, which follow from the commuting property of the coordinate variables between themselves, we can develop the reconstruction theory of the measure, namely the Favard's theorem. We then further develop some related problems including the marginal distributions and the rank theory of the Jacobi operators. We will see that the deficiency rank of the Jacobi operator implies that the underlying measure is supported on some algebraic surface and vice versa. We will provide with some examples. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Multivariate Orthogonal Laurent Polynomials and Integrable Systems
    Ariznabarreta, Gerardo
    Manas, Manuel
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (01) : 79 - 185
  • [22] On multivariate orthogonal polynomials and elementary symmetric functions
    Bracciali, Cleonice F.
    Pinar, Miguel A.
    NUMERICAL ALGORITHMS, 2023, 92 (01) : 183 - 206
  • [24] Multivariate Orthogonal Polynomials and Modified Moment Functionals
    Delgado, Antonia M.
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [25] MULTIVARIATE ORTHOGONAL POLYNOMIALS AND OPERATOR-THEORY
    XU, Y
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 343 (01) : 193 - 202
  • [26] Asymptotics of multivariate orthogonal polynomials with hyperoctahedral symmetry
    van Diejen, J. F.
    JACK, HALL-LITTLEWOOD AND MACDONALD POLYNOMIALS, 2006, 417 : 157 - 169
  • [27] On multivariate orthogonal polynomials and elementary symmetric functions
    Cleonice F. Bracciali
    Miguel A. Piñar
    Numerical Algorithms, 2023, 92 : 183 - 206
  • [28] A STIELTJES ALGORITHM FOR GENERATING MULTIVARIATE ORTHOGONAL POLYNOMIALS
    Liu, Zexin
    Narayandagger, Akil
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : A1125 - A1147
  • [29] MULTIVARIATE ORTHOGONAL POLYNOMIALS TO EXTRACT SINGULAR POINTS
    Kihl, O.
    Tremblais, B.
    Augereau, B.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 857 - 860
  • [30] Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two variables
    Lewanowicz, Stanislaw
    Wozny, Pawel
    Area, Ivan
    Godoy, Eduardo
    NUMERICAL ALGORITHMS, 2008, 49 (1-4) : 199 - 220