Direct measurement of electrostatic potentials at the atomic scale: A conceptual comparison between electron holography and scanning transmission electron microscopy

被引:16
|
作者
Winkler, Florian [1 ]
Barthel, Juri [1 ]
Dunin-Borkowski, Rafal E. [1 ,2 ]
Mueller-Caspary, Knut [1 ,3 ]
机构
[1] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electron ER C, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Peter Grunberg Inst 5, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
关键词
Off-axis electron holography; Scanning transmission electron microscopy; Electrostatic potentials; Thermal diffuse scattering; WAVE-ABERRATION; DETECTOR; PTYCHOGRAPHY; DIFFRACTION; PERFORMANCE; SCATTERING; THICKNESS;
D O I
10.1016/j.ultramic.2019.112926
中图分类号
TH742 [显微镜];
学科分类号
摘要
Off-axis electron holography and first moment STEM are sensitive to electromagnetic potentials or fields, respectively. In this work, we investigate in what sense the results obtained from both techniques are equivalent and work out the major differences. The analysis is focused on electrostatic (Coulomb) potentials at atomic spatial resolution. It is shown that the probe-forming/objective aperture strongly affects the reconstructed electrostatic potentials and that, as a result of the different illumination setups, dynamical diffraction effects show a specific response with increasing specimen thickness. It is shown that thermal diffuse scattering is negligible for a wide range of specimen thicknesses, when evaluating the first moment of diffraction patterns.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Direct Observation of Atomic Arrangement in Multicomponent Calcium Ferrite Using Scanning Transmission Electron Microscopy
    Takehara, Kenta
    Ikeda, Kohei
    Kawano, Takashi
    Higuchi, Takahide
    ISIJ INTERNATIONAL, 2023, 63 (10) : 1567 - 1575
  • [22] Measuring Dynamic Structural Changes of Nanoparticles at the Atomic Scale Using Scanning Transmission Electron Microscopy
    De Wael, Annelies
    De Backer, Annick
    Jones, Lewys
    Varambhia, Aakash
    Nellist, Peter D.
    Van Aert, Sandra
    PHYSICAL REVIEW LETTERS, 2020, 124 (10)
  • [23] Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy
    Mavrocordatos, D
    Pronk, W
    Boller, M
    WATER SCIENCE AND TECHNOLOGY, 2004, 50 (12) : 9 - 18
  • [24] Atomic scale defect analysis in the scanning transmission electron microscope
    Arslan, Ilke
    Browning, Nigel D.
    MICROSCOPY RESEARCH AND TECHNIQUE, 2006, 69 (05) : 330 - 342
  • [25] Strain Measurement in Semiconductor Heterostructures by Scanning Transmission Electron Microscopy
    Mueller, Knut
    Rosenauer, Andreas
    Schowalter, Marco
    Zweck, Josef
    Fritz, Rafael
    Volz, Kerstin
    MICROSCOPY AND MICROANALYSIS, 2012, 18 (05) : 995 - 1009
  • [27] Atomic resolution scanning transmission electron microscopy on the 200 kV FEGTEM
    James, EM
    Browning, ND
    SCANNING, 1999, 21 (02) : 91 - 92
  • [28] Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy
    Liu, Jingyue
    MICROSCOPY AND MICROANALYSIS, 2021, 27 (05) : 943 - 995
  • [29] Ni atomic disorder in ZrNiSn revealed by scanning transmission electron microscopy
    Li, Zixuan
    Xue, Wenhua
    Han, Shen
    Gao, Ziheng
    Li, Airan
    Zhao, Xinbing
    Wang, Yumei
    Fu, Chenguang
    Zhu, Tiejun
    MATERIALS TODAY PHYSICS, 2023, 34
  • [30] Atomic number dependence of Z contrast in scanning transmission electron microscopy
    Yamashita, Shunsuke
    Kikkawa, Jun
    Yanagisawa, Keiichi
    Nagai, Takuro
    Ishizuka, Kazuo
    Kimoto, Koji
    SCIENTIFIC REPORTS, 2018, 8