A SUPERVISORY APPROACH TO SEMI-SUPERVISED CLUSTERING

被引:1
|
作者
Conroy, Bryan [1 ]
Xi, Yongxin Taylor [1 ]
Ramadge, Peter [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
关键词
Clustering methods; Algorithms; Pattern classification; Learning systems;
D O I
10.1109/ICASSP.2010.5495368
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a new approach to semi-supervised clustering that utilizes boosting to simultaneously learn both a similarity measure and a clustering of the data from given instance-level must-link and cannot-link constraints. The approach is distinctive in that it uses a supervising feedback loop to gradually update the similarity while at the same time guiding an underlying unsupervised clustering algorithm. Our approach is grounded in the theory of boosting. We provide three examples of the clustering algorithm on real datasets.
引用
收藏
页码:1858 / 1861
页数:4
相关论文
共 50 条
  • [31] Active semi-supervised fuzzy clustering
    Grira, Nizar
    Crucianu, Michel
    Boujemaa, Nozha
    [J]. PATTERN RECOGNITION, 2008, 41 (05) : 1834 - 1844
  • [32] Semi-supervised hierarchical clustering algorithms
    Amar, A
    Labzour, NT
    Bensaid, A
    [J]. SIXTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1997, 40 : 232 - 239
  • [33] SemiSync: Semi-supervised Clustering by Synchronization
    Zhang, Zhong
    Kang, Didi
    Gao, Chongming
    Shao, Junming
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 358 - 362
  • [34] Weighted Semi-supervised Fuzzy Clustering
    Kong, Yi-qing
    Wang, Shi-tong
    [J]. FUZZY INFORMATION AND ENGINEERING, VOL 1, 2009, 54 : 465 - 470
  • [35] Categorization Using Semi-Supervised Clustering
    Hu, Jianying
    Singh, Moninder
    Mojsilovic, Aleksandra
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3666 - 3669
  • [36] Input validation for semi-supervised clustering
    Yip, Kevin Y.
    Ng, Michael K.
    Cheung, David W.
    [J]. ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 479 - 483
  • [37] A survey on semi-supervised graph clustering
    Daneshfar, Fatemeh
    Soleymanbaigi, Sayvan
    Yamini, Pedram
    Amini, Mohammad Sadra
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [38] Research Progress on Semi-Supervised Clustering
    Qin, Yue
    Ding, Shifei
    Wang, Lijuan
    Wang, Yanru
    [J]. COGNITIVE COMPUTATION, 2019, 11 (05) : 599 - 612
  • [39] Semi-supervised deep density clustering
    Xu, Xiao
    Hou, Haiwei
    Ding, Shifei
    [J]. APPLIED SOFT COMPUTING, 2023, 148
  • [40] Semi-supervised Linear Discriminant Clustering
    Liu, Chien-Liang
    Hsaio, Wen-Hoar
    Lee, Chia-Hoang
    Gou, Fu-Sheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (07) : 989 - 1000