A SUPERVISORY APPROACH TO SEMI-SUPERVISED CLUSTERING

被引:1
|
作者
Conroy, Bryan [1 ]
Xi, Yongxin Taylor [1 ]
Ramadge, Peter [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
关键词
Clustering methods; Algorithms; Pattern classification; Learning systems;
D O I
10.1109/ICASSP.2010.5495368
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a new approach to semi-supervised clustering that utilizes boosting to simultaneously learn both a similarity measure and a clustering of the data from given instance-level must-link and cannot-link constraints. The approach is distinctive in that it uses a supervising feedback loop to gradually update the similarity while at the same time guiding an underlying unsupervised clustering algorithm. Our approach is grounded in the theory of boosting. We provide three examples of the clustering algorithm on real datasets.
引用
收藏
页码:1858 / 1861
页数:4
相关论文
共 50 条
  • [1] Spectral clustering: A semi-supervised approach
    Chen, Weifu
    Feng, Guocan
    [J]. NEUROCOMPUTING, 2012, 77 (01) : 229 - 242
  • [2] Semi-supervised graph clustering: a kernel approach
    Brian Kulis
    Sugato Basu
    Inderjit Dhillon
    Raymond Mooney
    [J]. Machine Learning, 2009, 74 : 1 - 22
  • [3] Semi-supervised graph clustering: a kernel approach
    Kulis, Brian
    Basu, Sugato
    Dhillon, Inderjit
    Mooney, Raymond
    [J]. MACHINE LEARNING, 2009, 74 (01) : 1 - 22
  • [4] A semi-supervised clustering approach using labeled data
    Taghizabet, A.
    Tanha, J.
    Amini, A.
    Mohammadzadeh, J.
    [J]. SCIENTIA IRANICA, 2023, 30 (01) : 104 - 115
  • [5] A Semi-Supervised Clustering Approach for Semantic Slot Labelling
    Cuayahuitl, Heriberto
    Dethlefs, Nina
    Hastie, Helen
    [J]. 2014 13TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2014, : 500 - 505
  • [6] Fast Semi-Supervised Fuzzy Clustering :Approach and Application
    Cai, Jia-xin
    Yang, Feng
    Feng, Guo-can
    [J]. PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 108 - +
  • [7] Semi-supervised clustering methods
    Bair, Eric
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05): : 349 - 361
  • [8] SEMI-SUPERVISED SPECTRAL CLUSTERING
    Mai, Xiaoyi
    Couillet, Romain
    [J]. 2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 2012 - 2016
  • [9] A review on semi-supervised clustering
    Cai, Jianghui
    Hao, Jing
    Yang, Haifeng
    Zhao, Xujun
    Yang, Yuqing
    [J]. INFORMATION SCIENCES, 2023, 632 : 164 - 200
  • [10] A Graph-Based Projection Approach for Semi-supervised Clustering
    Yoshida, Tetsuya
    Okatani, Kazuhiro
    [J]. KNOWLEDGE MANAGEMENT AND ACQUISITION FOR SMART SYSTEMS AND SERVICES, 2010, 6232 : 1 - 13