Joint Clustering and Discriminative Feature Alignment for Unsupervised Domain Adaptation

被引:37
|
作者
Deng, Wanxia [1 ]
Liao, Qing [2 ]
Zhao, Lingjun [1 ]
Guo, Deke [3 ]
Kuang, Gangyao [1 ]
Hu, Dewen [4 ]
Liu, Li [3 ,5 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci, Changsha 410073, Hunan, Peoples R China
[2] Harbin Inst Technol, Dept Comp Sci & Technol, Shenzhen 518055, Peoples R China
[3] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Hunan, Peoples R China
[4] Natl Univ Def Technol, Coll Intelligent Sci, Changsha 410073, Hunan, Peoples R China
[5] Univ Oulu, Ctr Machine Vis & Signal Anal, Oulu 90570, Finland
基金
中国国家自然科学基金; 芬兰科学院;
关键词
Feature extraction; Task analysis; Image reconstruction; Training; Image coding; Deep learning; Data mining; Domain adaptation; deep learning; transfer learning; unsupervised learning; semisupervised learning; KERNEL;
D O I
10.1109/TIP.2021.3109530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised Domain Adaptation (UDA) aims to learn a classifier for the unlabeled target domain by leveraging knowledge from a labeled source domain with a different but related distribution. Many existing approaches typically learn a domain-invariant representation space by directly matching the marginal distributions of the two domains. However, they ignore exploring the underlying discriminative features of the target data and align the cross-domain discriminative features, which may lead to suboptimal performance. To tackle these two issues simultaneously, this paper presents a Joint Clustering and Discriminative Feature Alignment (JCDFA) approach for UDA, which is capable of naturally unifying the mining of discriminative features and the alignment of class-discriminative features into one single framework. Specifically, in order to mine the intrinsic discriminative information of the unlabeled target data, JCDFA jointly learns a shared encoding representation for two tasks: supervised classification of labeled source data, and discriminative clustering of unlabeled target data, where the classification of the source domain can guide the clustering learning of the target domain to locate the object category. We then conduct the cross-domain discriminative feature alignment by separately optimizing two new metrics: 1) an extended supervised contrastive learning, i.e., semi-supervised contrastive learning 2) an extended Maximum Mean Discrepancy (MMD), i.e., conditional MMD, explicitly minimizing the intra-class dispersion and maximizing the inter-class compactness. When these two procedures, i.e., discriminative features mining and alignment are integrated into one framework, they tend to benefit from each other to enhance the final performance from a cooperative learning perspective. Experiments are conducted on four real-world benchmarks (e.g., Office-31, ImageCLEF-DA, Office-Home and VisDA-C). All the results demonstrate that our JCDFA can obtain remarkable margins over state-of-the-art domain adaptation methods. Comprehensive ablation studies also verify the importance of each key component of our proposed algorithm and the effectiveness of combining two learning strategies into a framework.
引用
收藏
页码:7842 / 7855
页数:14
相关论文
共 50 条
  • [21] Deep joint subdomain alignment for unsupervised domain adaptation
    Zhong, Zhenze
    Wang, Dianyu
    Zhou, Qiang
    Lan, Ying
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
  • [22] Joint Feature and Labeling Function Adaptation for Unsupervised Domain Adaptation
    Cui, Fengli
    Chen, Yinghao
    Du, Yuntao
    Cao, Yikang
    Wang, Chongjun
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT I, 2022, 13280 : 432 - 446
  • [23] Subspace-based Feature Alignment for Unsupervised Domain Adaptation
    Yi, Eojindl
    Kim, Junmo
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10163 - 10169
  • [24] Independent Feature Decomposition and Instance Alignment for Unsupervised Domain Adaptation
    He, Qichen
    Xiao, Siying
    Ye, Mao
    Zhu, Xiatian
    Neri, Ferrante
    Hou, Dongde
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 819 - 827
  • [25] Enhanced Feature Alignment for Unsupervised Domain Adaptation of Semantic Segmentation
    Chen, Tao
    Wang, Shui-Hua
    Wang, Qiong
    Zhang, Zheng
    Xie, Guo-Sen
    Tang, Zhenmin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1042 - 1054
  • [26] Unsupervised Domain Adaptation Based Image Synthesis and Feature Alignment for Joint Optic Disc and Cup Segmentation
    Lei, Haijun
    Liu, Weixin
    Xie, Hai
    Zhao, Benjian
    Yue, Guanghui
    Lei, Baiying
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (01) : 90 - 102
  • [27] Joint metric and feature representation learning for unsupervised domain adaptation
    Xie, Yue
    Du, Zhekai
    Li, Jingjing
    Jing, Mengmeng
    Chen, Erpeng
    Lu, Ke
    KNOWLEDGE-BASED SYSTEMS, 2020, 192
  • [28] Learning discriminative feature via a generic auxiliary distribution for unsupervised domain adaptation
    Chen, Qipeng
    Zhang, Haofeng
    Ye, Qiaolin
    Zhang, Zheng
    Yang, Wankou
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (01) : 175 - 185
  • [29] Learning discriminative feature via a generic auxiliary distribution for unsupervised domain adaptation
    Qipeng Chen
    Haofeng Zhang
    Qiaolin Ye
    Zheng Zhang
    Wankou Yang
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 175 - 185
  • [30] Multi-Partition Feature Alignment Network for Unsupervised Domain Adaptation
    Sukhija, Sanatan
    Varadarajan, Srenivas
    Krishnan, Narayanan C.
    Rai, Sujit
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,