On concentration inequalities for vector-valued Lipschitz functions

被引:0
|
作者
Katselis, Dimitrios [1 ]
Xie, Xiaotian [2 ,3 ]
Beck, Carolyn L. [2 ,3 ]
Srikant, R. [1 ,3 ]
机构
[1] Univ Illinois, ECE Dept, Champaign, IL 61820 USA
[2] Univ Illinois, ISE Dept, Champaign, IL USA
[3] Univ Illinois, Coordinated Sci Lab, Champaign, IL USA
关键词
Theorem of Bobkov and Gotze; Concentration; Markov chain; Transportation cost inequality;
D O I
10.1016/j.spl.2021.109071
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive two upper bounds for the probability of deviation of a vector-valued Lipschitz function of a collection of random variables from its expected value. The resulting upper bounds can be tighter than bounds obtained by a direct application of a classical theorem due to Bobkov and Gotze. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Banach-Stone theorems for vector-valued little Lipschitz functions
    Jimenez-Vargas, Antonio
    Villegas-Vallecillos, Moises
    Wang, Ya-Shu
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (1-2): : 81 - 100
  • [22] Minimal Lipschitz and ∞-harmonic extensions of vector-valued functions on finite graphs
    Bacak, Miroslav
    Hertrich, Johannes
    Neumayer, Sebastian
    Steidl, Gabriele
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2020, 9 (04) : 935 - 959
  • [23] Generalised trapezoid type inequalities for vector-valued functions and applications
    Buse, C
    Dragomir, SS
    Roumeliotis, J
    Sofo, A
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (03): : 435 - 450
  • [24] Minimax inequalities for vector-valued functions in abstract convexity spaces
    Salehnejad, M.
    Azhini, M.
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (01): : 41 - 55
  • [25] Differential-functional inequalities for bounded vector-valued functions
    Herzog, G
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (04): : 1055 - 1063
  • [26] INTEGRATION OF VECTOR-VALUED FUNCTIONS WITH RESPECT TO VECTOR-VALUED MEASURES
    DEBIEVE, C
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (07): : 943 - 957
  • [27] THE BSE CONCEPTS FOR VECTOR-VALUED LIPSCHITZ ALGEBRAS
    Abtahi, Fatemeh
    Kamali, Zeinab
    Toutounchi, Maryam
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) : 1171 - 1186
  • [28] ON VECTOR-VALUED LIPSCHITZ FUNCTION-SPACES
    GALINDO, P
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01): : 43 - 48
  • [29] THE SECOND DUAL OF VECTOR-VALUED LIPSCHITZ ALGEBRAS
    Biyabani, Emamgholi
    Rejali, Ali
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (03): : 103 - 110
  • [30] Some Properties of Vector-valued Lipschitz Algebras
    Azizi, Mohsen
    Biyabani, Emamgholi
    Rejali, Ali
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02): : 191 - 205