On concentration inequalities for vector-valued Lipschitz functions

被引:0
|
作者
Katselis, Dimitrios [1 ]
Xie, Xiaotian [2 ,3 ]
Beck, Carolyn L. [2 ,3 ]
Srikant, R. [1 ,3 ]
机构
[1] Univ Illinois, ECE Dept, Champaign, IL 61820 USA
[2] Univ Illinois, ISE Dept, Champaign, IL USA
[3] Univ Illinois, Coordinated Sci Lab, Champaign, IL USA
关键词
Theorem of Bobkov and Gotze; Concentration; Markov chain; Transportation cost inequality;
D O I
10.1016/j.spl.2021.109071
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive two upper bounds for the probability of deviation of a vector-valued Lipschitz function of a collection of random variables from its expected value. The resulting upper bounds can be tighter than bounds obtained by a direct application of a classical theorem due to Bobkov and Gotze. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条