Weak sharp minima for semi-infinite optimization problems with applications

被引:23
|
作者
Zheng, Xi Yin [1 ]
Yang, Xiao Qi
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
semi-infinite optimization; sharp minima; weak sharp minima; subdifferential; normal cone;
D O I
10.1137/060670213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study local weak sharp minima and sharp minima for smooth semi- infinite optimization problems SIP. We provide several dual and primal characterizations for a point to be a sharp minimum or a weak sharp minimum of SIP. As applications, we present several sufficient and necessary conditions of calmness for infinitely many smooth inequalities. In particular, we improve some calmness results in [ R. Henrion and J. Outrata, Math. Program., 104 ( 2005), pp. 437 - 464].
引用
收藏
页码:573 / 588
页数:16
相关论文
共 50 条
  • [31] Solving Disjunctive Optimization Problems by Generalized Semi-infinite Optimization Techniques
    Peter Kirst
    Oliver Stein
    Journal of Optimization Theory and Applications, 2016, 169 : 1079 - 1109
  • [32] Necessary Conditions for Weak Sharp Minima in Cone-Constrained Optimization Problems
    Zhang, W. Y.
    Xu, S.
    Li, S. J.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [33] The global weak sharp minima with explicit exponents in polynomial vector optimization problems
    Tien Son Pham
    Xuan Duc Ha Truong
    Yao, Jen-Chih
    POSITIVITY, 2018, 22 (01) : 219 - 244
  • [34] The global weak sharp minima with explicit exponents in polynomial vector optimization problems
    Tiến Sơn Phạm
    Xuân Ɖức Hà Trương
    Jen-Chih Yao
    Positivity, 2018, 22 : 219 - 244
  • [35] Semi-Infinite Transportation Problems
    Voigt, H.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (03): : 729 - 741
  • [36] SEMI-INFINITE TRANSPORTATION PROBLEMS
    KORTANEK, KO
    YAMASAKI, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 88 (02) : 555 - 565
  • [37] New applications of linear semi-infinite optimization theory in copositive optimization
    Goberna, Miguel A.
    Ridolfi, Andrea B.
    de Serio, Virginia N. Vera
    OPTIMIZATION, 2024,
  • [38] Generalized weak sharp minima in cone-constrained convex optimization with applications
    Luo, H. L.
    Huang, X. X.
    Peng, J. W.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (03) : 807 - 821
  • [39] On the numerical treatment of linearly constrained semi-infinite optimization problems
    Leon, T
    Sanmatias, S
    Vercher, E
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 121 (01) : 78 - 91
  • [40] CONTRACTIBILITY OF THE SOLUTION SETS FOR SEMI-INFINITE SET OPTIMIZATION PROBLEMS
    Ansari, Qamrul hasan
    Sharma, Pradeep kumar
    Yaot, Jen-chih
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (02) : 429 - 443