A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates

被引:43
|
作者
Wang, Hanquan [1 ]
机构
[1] Natl Univ Singapore, Dept Computat Sci, Singapore 117543, Singapore
关键词
coupled Gross-Pitaevskii equations; rotating two-component BECs; time-splitting spectral method;
D O I
10.1016/j.cam.2006.04.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a time-splitting spectral method for the coupled Gross-Pitaevskii equations, which describe the dynamics of rotating two-component Bose-Einstein condensates at a very low temperature. The new numerical method is explicit, unconditionally stable, time reversible, time transverse invariant, and of spectral accuracy in space and second-order accuracy in time. Moreover, it conserves the position densities in the discretized level. Numerical applications on studying the generation of topological modes and the vortex lattice dynamics for the rotating two-component Bose-Einstein condensates are presented in detail. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 104
页数:17
相关论文
共 50 条
  • [41] Effects of nonlinearity on the optical diffraction of Bose-Einstein condensates: Direct integration of optically coupled multicomponent Gross-Pitaevskii equation
    Ando, Taro
    Ohtake, Yoshiyuki
    Kondo, Jun-ichi
    Nakamura, Katsuhiro
    [J]. PHYSICAL REVIEW A, 2011, 83 (02):
  • [42] PAINLEVE ANALYSIS, LAX PAIR AND BACKLUND TRANSFORMATION FOR THE GROSS-PITAEVSKII EQUATION IN THE BOSE-EINSTEIN CONDENSATES
    Qi, Feng-Hua
    Tian, Bo
    Xu, Tao
    Zhang, Hai-Qiang
    Li, Li-Li
    Meng, Xiang-Hua
    Lue, Xing
    Liu, Wen-Jun
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (08): : 1037 - 1047
  • [43] Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime
    Boccato, Chiara
    Brennecke, Christian
    Cenatiempo, Serena
    Schlein, Benjamin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 1311 - 1395
  • [44] Effective two-mode model in Bose-Einstein condensates versus Gross-Pitaevskii simulations
    Mauro Nigro
    Pablo Capuzzi
    Horacio M. Cataldo
    Dora M. Jezek
    [J]. The European Physical Journal D, 2017, 71
  • [45] Conformal invariance in out-of-equilibrium Bose-Einstein condensates governed by the Gross-Pitaevskii equation
    Estrada, J. Amette
    Noseda, M.
    Cobelli, P. J.
    Mininni, P. D.
    [J]. PHYSICAL REVIEW A, 2024, 109 (06)
  • [46] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [47] Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    [J]. ANNALS OF MATHEMATICS, 2010, 172 (01) : 291 - 370
  • [48] Numerical study of the coupled time-dependent Gross-Pitaevskii equation: Application to Bose-Einstein condensation
    Adhikari, SK
    [J]. PHYSICAL REVIEW E, 2001, 63 (05):
  • [49] An efficient time-splitting compact finite difference method for Gross-Pitaevskii equation
    Wang, Hanquan
    Ma, Xiu
    Lu, Junliang
    Gao, Wen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 297 : 131 - 144
  • [50] Energy-dependent scattering and the Gross-Pitaevskii equation in two-dimensional Bose-Einstein condensates
    Lee, MD
    Morgan, SA
    Davis, MJ
    Burnett, K
    [J]. PHYSICAL REVIEW A, 2002, 65 (04): : 10