Improved Prediction on Heart Transplant Rejection Using Convolutional Autoencoder and Multiple Instance Learning on Whole-Slide Imaging

被引:3
|
作者
Zhu, Yuanda [1 ]
Tong, Li [2 ,3 ]
Deshpande, Shriprasad R. [4 ]
Wang, May D. [2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA USA
[4] Childrens Natl Hlth Syst, Pediat Cardiol, Washington, DC USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
heart transplant rejection; pathological whole-slide imaging; stacked convolutional autoencoder; multiple instance learning; weakly-supervised learning;
D O I
10.1109/bhi.2019.8834632
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Heart transplant rejection is one major threat for the survival of patients with a heart transplant. Endomyocardial biopsies are effective in showing signs of heart transplant rejection even before patients have any symptoms. Manually examining the tissue samples is costly, time-consuming and error-prone. With recent advances in deep learning (DL) based image processing methods, automatic training and prediction on heart transplant rejection using whole-slide images expect to be promising. This paper develops an advanced pipeline for quality control, feature extraction, clustering and classification. We first implement a stacked convolutional autoencoder to extract feature maps for each tile; we then incorporate multiple instance learning (MIL) with dimensionality reduction and unsupervised clustering prior to classification. Our results show that utilizing unsupervised clustering after feature extraction can achieve higher classification results while preserving the capability for multi-class classification.
引用
收藏
页数:4
相关论文
共 35 条
  • [21] Expert-level diagnosis of nasal polyps using deep learning on whole-slide imaging
    Wu, Qingwu
    Chen, Jianning
    Deng, Huiyi
    Ren, Yong
    Sun, Yueqi
    Wang, Weihao
    Yuan, Lianxiong
    Hong, Haiyu
    Zheng, Rui
    Kong, Weifeng
    Huang, Xuekun
    Huang, Guifang
    Wang, Lunji
    Zhang, Yana
    Han, Lanqing
    Yang, Qintai
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2020, 145 (02) : 698 - +
  • [22] Improved Anomaly Detection in Low-Resolution and Noisy Whole-Slide Images using Transfer Learning
    Al-Olofi, Wafaa A.
    Rushdi, Muhammad A.
    Islam, Muhammad A.
    Badawi, Ahmed M.
    2018 9TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2018, : 114 - 117
  • [23] Improved DeTraC Binary Coyote Net-Based Multiple Instance Learning for Predicting Lymph Node Metastasis of Breast Cancer From Whole-Slide Pathological Images
    Ramkumar, M.
    Kumar, R. Sarath
    Padmapriya, R.
    Mahandiran, S. Balu
    INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2024, 20 (06):
  • [24] Classification of colorectal cancer consensus molecular subtypes using attention-based multi-instance learning network on whole-slide images
    Xu, Huilin
    Wu, Aoshen
    Ren, He
    Yu, Chenghang
    Liu, Gang
    Liu, Lei
    ACTA HISTOCHEMICA, 2023, 125 (06)
  • [25] Efficient subtyping of ovarian cancer histopathology whole slide images using active sampling in multiple instance learning
    Breen, Jack
    Allen, Katie
    Zucker, Kieran
    Hall, Geoff
    Orsi, Nicolas M.
    Ravikumar, Nishant
    MEDICAL IMAGING 2023, 2023, 12471
  • [26] Spatially-resolved prediction of gene expression signatures in H&E whole slide images using additive multiple instance learning models
    Markey, Miles
    Kim, Juhyun
    Goldstein, Zvi
    Gerardin, Ylaine
    Brosnan-Cashman, Jacqueline
    Javed, Syed Ashar
    Juyal, Dinkar
    Padigela, Harshith
    Yu, Limin
    Rahsepar, Bahar
    Abel, John
    Hennek, Stephanie
    Khosla, Archit
    Parmar, Chintan
    Taylor-Weiner, Amaro
    MOLECULAR CANCER THERAPEUTICS, 2023, 22 (12)
  • [27] Improving Interpretability for Computer-Aided Diagnosis Tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-Based Explanations
    Pirovano, Antoine
    Heuberger, Hippolyte
    Berlemont, Sylvain
    Ladjal, Said
    Bloch, Isabelle
    INTERPRETABLE AND ANNOTATION-EFFICIENT LEARNING FOR MEDICAL IMAGE COMPUTING, IMIMIC 2020, MIL3ID 2020, LABELS 2020, 2020, 12446 : 43 - 53
  • [28] A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue
    Nirschl, Jeffrey J.
    Janowczyk, Andrew
    Peyster, Eliot G.
    Frank, Renee
    Margulies, Kenneth B.
    Feldman, Michael D.
    Madabhushi, Anant
    PLOS ONE, 2018, 13 (04):
  • [29] Multiple instance learning-based classification of subtypes of renal cell carcinoma using the largest dataset of whole slide images
    Jeong, D.
    Hwang, G.
    Cho, W. J.
    Yoon, H.
    Ra, J. S.
    Jung, C. K.
    Chong, Y.
    VIRCHOWS ARCHIV, 2024, 485 : S116 - S116
  • [30] Identification lymph node metastasis in esophageal squamous cell carcinoma using whole slide images and a hybrid network of multiple instance and transfer learning
    Kang, Huan
    Yang, Meilin
    Zhang, Fan
    Xu, Huiya
    Ren, Shenghan
    Li, Jun
    Chen, Duofang
    Wang, Fen
    Li, Dan
    Chen, Xueli
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82