Improved Prediction on Heart Transplant Rejection Using Convolutional Autoencoder and Multiple Instance Learning on Whole-Slide Imaging

被引:3
|
作者
Zhu, Yuanda [1 ]
Tong, Li [2 ,3 ]
Deshpande, Shriprasad R. [4 ]
Wang, May D. [2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA USA
[4] Childrens Natl Hlth Syst, Pediat Cardiol, Washington, DC USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
heart transplant rejection; pathological whole-slide imaging; stacked convolutional autoencoder; multiple instance learning; weakly-supervised learning;
D O I
10.1109/bhi.2019.8834632
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Heart transplant rejection is one major threat for the survival of patients with a heart transplant. Endomyocardial biopsies are effective in showing signs of heart transplant rejection even before patients have any symptoms. Manually examining the tissue samples is costly, time-consuming and error-prone. With recent advances in deep learning (DL) based image processing methods, automatic training and prediction on heart transplant rejection using whole-slide images expect to be promising. This paper develops an advanced pipeline for quality control, feature extraction, clustering and classification. We first implement a stacked convolutional autoencoder to extract feature maps for each tile; we then incorporate multiple instance learning (MIL) with dimensionality reduction and unsupervised clustering prior to classification. Our results show that utilizing unsupervised clustering after feature extraction can achieve higher classification results while preserving the capability for multi-class classification.
引用
收藏
页数:4
相关论文
共 35 条
  • [1] Differentiable Zooming for Multiple Instance Learning on Whole-Slide Images
    Thandiackal, Kevin
    Chen, Boqi
    Pati, Pushpak
    Jaume, Guillaume
    Williamson, Drew F. K.
    Gabrani, Maria
    Goksel, Orcun
    COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 699 - 715
  • [2] AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images
    Liu, Pei
    Ji, Luping
    Ye, Feng
    Fu, Bo
    MEDICAL IMAGE ANALYSIS, 2024, 91
  • [3] ProtoMIL: Multiple Instance Learning with Prototypical Parts for Whole-Slide Image Classification
    Rymarczyk, Dawid
    Pardyl, Adam
    Kraus, Jaroslaw
    Kaczynska, Aneta
    Skomorowski, Marek
    Zielinski, Bartosz
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 421 - 436
  • [4] Predicting Heart Rejection Using Histopathological Whole-Slide Imaging and Deep Neural Network with Dropout
    Tong, Li
    Hoffman, Ryan
    Deshpande, Shriprasad R.
    Wang, May D.
    2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 1 - 4
  • [5] End-to-end Multiple Instance Learning for Whole-Slide Cytopathology of Urothelial Carcinoma
    Butke, Joshua
    Frick, Tatjana
    Roghmann, Florian
    El-Mashtoly, Samir F.
    Gerwert, Klaus
    Mosig, Axel
    MICCAI WORKSHOP ON COMPUTATIONAL PATHOLOGY, VOL 156, 2021, 156 : 57 - 68
  • [6] Diagnosing effusion fluid cytology using whole slide imaging and multiple instance learning
    Wang, Tongxin
    Parwani, Anil
    Li, Zaibo
    MODERN PATHOLOGY, 2018, 31 : 600 - 601
  • [7] Diagnosing effusion fluid cytology using whole slide imaging and multiple instance learning
    Wang, Tongxin
    Parwani, Anil
    Li, Zaibo
    LABORATORY INVESTIGATION, 2018, 98 : 600 - 601
  • [8] Multiple-instance-learning-based detection of coeliac disease in histological whole-slide images
    Denholm, J.
    Schreiber, B. A.
    Evans, S. E.
    Crook, O. M.
    Sharma, A.
    Watson, J. L.
    Bancroft, H.
    Langman, G.
    Gilbey, J. D.
    Shonlieb, C. B.
    Arends, M. J.
    Soilleux, E. J.
    JOURNAL OF PATHOLOGY, 2023, 261 : S3 - S3
  • [9] Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
    Wang, Zhenzhen
    Saoud, Carla
    Wangsiricharoen, Sintawat
    James, Aaron W.
    Popel, Aleksander S.
    Sulam, Jeremias
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3952 - 3968
  • [10] Dual-Attention Multiple Instance Learning Framework for Pathology Whole-Slide Image Classification
    Liu, Dehua
    Li, Chengming
    Hu, Xiping
    Hu, Bin
    ELECTRONICS, 2024, 13 (22)