Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection

被引:6
|
作者
Lourenco, Ines [1 ]
Mattila, Robert [1 ]
Rojas, Cristian R. [1 ]
Hu Xiaoming [2 ]
Wahlberg, Bo [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Decis & Control Syst, Stockholm, Sweden
[2] KTH Royal Inst Technol, Sch Engn Sci, Div Optimizat & Syst Theory, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Belief estimation; counter-adversarial systems; hidden Markov models; inverse decision making; inverse filtering; VARIANCE PORTFOLIO SELECTION;
D O I
10.1007/s11424-021-1247-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hidden Markov model (HMM) comprises a state with Markovian dynamics that can only be observed via noisy sensors. This paper considers three problems connected to HMMs, namely, inverse filtering, belief estimation from actions, and privacy enforcement in such a context. First, the authors discuss how HMM parameters and sensor measurements can be reconstructed from posterior distributions of an HMM filter. Next, the authors consider a rational decision-maker that forms a private belief (posterior distribution) on the state of the world by filtering private information. The authors show how to estimate such posterior distributions from observed optimal actions taken by the agent. In the setting of adversarial systems, the authors finally show how the decision-maker can protect its private belief by confusing the adversary using slightly sub-optimal actions. Applications range from financial portfolio investments to life science decision systems.
引用
收藏
页码:1801 / 1820
页数:20
相关论文
共 50 条
  • [1] Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection
    Inês Lourenço
    Robert Mattila
    Cristian R. Rojas
    Xiaoming Hu
    Bo Wahlberg
    Journal of Systems Science and Complexity, 2021, 34 : 1801 - 1820
  • [2] Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection
    Lourenço, Inês
    Mattila, Robert
    Rojas, Cristian R.
    Hu, Xiaoming
    Wahlberg, Bo
    Journal of Systems Science and Complexity, 2021, 34 (05) : 1801 - 1820
  • [3] Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection
    LOUREN?O Inês
    MATTILA Robert
    ROJAS Cristian R.
    HU Xiaoming
    WAHLBERG Bo
    Journal of Systems Science & Complexity, 2021, 34 (05) : 1801 - 1820
  • [4] Inverse Filtering for Hidden Markov Models
    Mattila, Robert
    Rojas, Cristian R.
    Krishnamurthy, Vikram
    Wahlberg, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [5] Filtering on hidden Markov models
    Kim, NS
    Kim, DK
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (09) : 253 - 255
  • [6] Filtering and Smoothing State Estimation for Flag Hidden Markov Models
    Doty, Kyle
    Roy, Sandip
    Fischer, Thomas R.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 7042 - 7047
  • [7] Private Filtering for Hidden Markov Models
    Mochaourab, Rami
    Oechtering, Tobias J.
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) : 888 - 892
  • [8] Inverse Filtering for Hidden Markov Models With Applications to Counter-Adversarial Autonomous Systems
    Mattila, Robert
    R. Rojas, Cristian
    Krishnamurthy, Vikram
    Wahlberg, Bo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 4987 - 5002
  • [9] Consistent Estimation of the Filtering and Marginal Smoothing Distributions in Nonparametric Hidden Markov Models
    De Castro, Yohann
    Gassiat, Elisabeth
    Le Corff, Sylvain
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 4758 - 4777
  • [10] Verifying Pufferfish Privacy in Hidden Markov Models
    Liu, Depeng
    Wang, Bow-Yaw
    Zhang, Lijun
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, VMCAI 2022, 2022, 13182 : 174 - 196