A hybrid prototype selection-based deep learning approach for anomaly detection in industrial machines

被引:29
|
作者
Monteiro, Rodrigo de Paula [1 ]
Lozada, Mariela Cerrada [2 ]
Mendieta, Diego Roman Cabrera [2 ,3 ]
Loja, Rene Vinicio Sanchez [2 ]
Filho, Carmelo Jose Albanez Bastos [4 ]
机构
[1] Univ Catol Pernambuco, Recife, Brazil
[2] Univ Politecn Salesiana, GIDTEC, Cuenca, Ecuador
[3] Dongguan Univ Technol, Dongguan, Guangdong, Peoples R China
[4] Univ Pernambuco, Recife, Brazil
关键词
Anomaly detection; Deep learning; Prototype selection; Rotating machinery; CONDITION-BASED MAINTENANCE; FAULT-DIAGNOSIS; NETWORKS;
D O I
10.1016/j.eswa.2022.117528
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection in time series is an important task to many applications, e.g , the maintenance policies of rotating machines within industries strongly rely on time series monitoring. Rotating machines are vital elements within industries. Therefore, maintenance policies on these critical elements concern the quality of products and safety issues. Condition-based maintenance is an example of those policies. In this context, we propose a novel method to train a deep learning-based feature extractor for the anomaly detection problem on rotating machinery. It consists of using a prototype selection algorithm to improve the training process of a randomly initialized feature extractor. We perform this process iteratively using data belonging to one probability distribution, i.e. , the normal class. We carried the prototype selection out with the Nearest Neighbors algorithm, and the feature extractor was a Convolutional Neural Network. We validate the method on three datasets of spectrograms related to gearbox and compressors faults and achieved promising results. We obtained detection rates in anomalous data close to 100%, and the anomaly detectors classified normal instances with accuracy values superior to 95%. Those results were competitive concerning other deep learning-based anomaly detectors in the literature, with the advantage of being an integrated solution.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Anomaly Detection Algorithm of Industrial Internet of Things Data Platform Based on Deep Learning
    Li, Xing
    Xie, Chao
    Zhao, Zhijia
    Wang, Chunbao
    Yu, Huajun
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2024, 8 (03): : 1037 - 1048
  • [32] Hybrid optimal feature selection-based iterative deep convolution learning for COVID-19 classification system
    Santosh Kumar Patra, P.
    Tripathy, Biswajit
    Computers in Biology and Medicine, 2024, 181
  • [33] Data anomaly detection with automatic feature selection and deep learning
    Jiang, Huachen
    Ge, Ensheng
    Wan, Chunfeng
    Li, Shu
    Quek, Ser Tong
    Yang, Kang
    Ding, Youliang
    Xue, Songtao
    STRUCTURES, 2023, 57
  • [34] A Deep Learning Approach for Efficient Anomaly Detection in WSNs
    Jothi, S. Arul
    Venkatesan, R.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (01)
  • [35] A Deep Learning Approach to Anomaly Detection in Nuclear Reactors
    Caliva, Francesco
    Ribeiro, Fabio De Sousa
    Mylonakis, Antonios
    Demaziere, Christophe
    Vinai, Paolo
    Leontidis, Georgios
    Kollias, Stefanos
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [36] A hybrid machine learning approach to network anomaly detection
    Shon, Taeshik
    Moon, Jongsub
    INFORMATION SCIENCES, 2007, 177 (18) : 3799 - 3821
  • [37] A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment
    Zhe Li
    Jingyue Li
    Yi Wang
    Kesheng Wang
    The International Journal of Advanced Manufacturing Technology, 2019, 103 : 499 - 510
  • [38] A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment
    Li, Zhe
    Li, Jingyue
    Wang, Yi
    Wang, Kesheng
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 103 (1-4): : 499 - 510
  • [39] A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment
    Li, Zhe
    Li, Jingyue
    Wang, Yi
    Wang, Kesheng
    International Journal of Advanced Manufacturing Technology, 2019, 103 (1-4): : 499 - 510
  • [40] A Deep Learning Approach to Industrial Corrosion Detection
    Farooqui, Mehwash
    Rahman, Atta
    Alsuliman, Latifa
    Alsaif, Zainab
    Albaik, Fatimah
    Alshammari, Cadi
    Sharaf, Razan
    Olatunji, Sunday
    Althubaiti, Sara Waslallah
    Gull, Hina
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (02): : 2587 - 2605