CO2 capture by pumping surface acidity to the deep ocean

被引:25
|
作者
Tyka, Michael D. [1 ]
Van Arsdale, Christopher [1 ]
Platt, John C. [1 ]
机构
[1] Google Inc, 601 N 34th St, Seattle, WA 98103 USA
关键词
NEUTRALIZATION; DISSOLUTION; CLIMATE; ALKALINIZATION; SEQUESTRATION; ACIDIFICATION; CARBONATE; REMOVAL; STORAGE; COST;
D O I
10.1039/d1ee01532j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To remain below 2 degrees C of warming, most IPCC pathways call for active CO2 removal (CDR). On geological timescales, ocean uptake regulates atmospheric CO2 concentration, with two homeostats driving CO2 uptake: dissolution of deep ocean carbonate deposits (1 ka timescales) and terrestrial weathering of silicate rocks (100 ka timescales). Many current ocean-based CDR proposals effectively act to accelerate the latter. Here we present a method which relies purely on the redistribution and dilution of acidity from a thin layer of the surface ocean to a thicker layer of deep ocean, in order to reduce surface acidification and accelerate carbonate homeostasis. This downward transport could be seen analogous to the action of the natural biological carbon pump. The method offers advantages over other ocean alkalinity and CO2-stripping methods: the conveyance of mass is minimized (acidity is pumped in situ to depth), and expensive mining, grinding and distribution of alkaline material is eliminated. No dilute substance needs to be concentrated, reducing the quantity of seawater to be processed. Finally, no terrestrial material is added to the ocean, avoiding significant alteration of seawater ion concentrations or issues with heavy metal toxicity (encountered in mineral-based alkalinity schemes). The artificial transport of acidity accelerates the natural deep ocean compensation by calcium carbonate. It has been estimated that the total compensation capacity of the ocean is on the order of 1500 GtC. We show through simulation that pumping of ocean acidity could remove up to 150 GtC from the atmosphere by 2100 without excessive increase of local pH. The permanence of the CO2 storage depends on the depth of acid pumping. At >3000 m, similar to 85% is retained for at least 300 years, and >50% for at least 2000 years. Shallow pumping (<2000 m) offers more of a stop-gap deferral of emissions for a few hundred years. Uptake efficiency and residence time also vary with the location of acidity pumping. Requiring only local resources (ocean water and energy), this method could be uniquely suited to utilize otherwise-unusable open ocean energy sources at scale. We present a brief techno-economic estimate of 130-250$ per tCO(2) at current prices and as low as 93$ per tCO(2) under modest learning-curve assumptions.
引用
收藏
页码:786 / 798
页数:13
相关论文
共 50 条
  • [31] Thermodynamic analysis and power requirements of CO2 capture, transportation, and storage in the ocean
    Michaelides, Efstathios E.
    ENERGY, 2021, 230
  • [32] Efficient CO2 capture by deep eutectic solvents through reducing the reaction between carbenes and CO2
    Zhu, Jiaxun
    Lu, Bohao
    Yang, Dezhong
    NEW JOURNAL OF CHEMISTRY, 2025, 49 (05) : 1875 - 1882
  • [33] An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
    Bakker, D. C. E.
    Pfeil, B.
    Smith, K.
    Hankin, S.
    Olsen, A.
    Alin, S. R.
    Cosca, C.
    Harasawa, S.
    Kozyr, A.
    Nojiri, Y.
    O'Brien, K. M.
    Schuster, U.
    Telszewski, M.
    Tilbrook, B.
    Wada, C.
    Akl, J.
    Barbero, L.
    Bates, N. R.
    Boutin, J.
    Bozec, Y.
    Cai, W. -J.
    Castle, R. D.
    Chavez, F. P.
    Chen, L.
    Chierici, M.
    Currie, K.
    de Baar, H. J. W.
    Evans, W.
    Feely, R. A.
    Fransson, A.
    Gao, Z.
    Hales, B.
    Hardman-Mountford, N. J.
    Hoppema, M.
    Huang, W. -J.
    Hunt, C. W.
    Huss, B.
    Ichikawa, T.
    Johannessen, T.
    Jones, E. M.
    Jones, S. D.
    Jutterstrom, S.
    Kitidis, V.
    Koertzinger, A.
    Landschuetzer, P.
    Lauvset, S. K.
    Lefevre, N.
    Manke, A. B.
    Mathis, J. T.
    Merlivat, L.
    EARTH SYSTEM SCIENCE DATA, 2014, 6 (01) : 69 - 90
  • [34] CO2 and CO Capture on the ZnO Surface: A GCMC and Electronic Structure Study
    Gordijo, Julia Silva
    Rodrigues, Nailton Martins
    Martins, Joao B. L.
    ACS OMEGA, 2023, 8 (49): : 46830 - 46840
  • [35] Impact of surface ocean acidification on the CO2 absorption rate
    Shanableh, A.
    Merabtene, T.
    Omar, M.
    Imteaz, M.
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2011, 3 (1-2) : 163 - 172
  • [36] Interfacial Properties of Deep Eutectic Solvents Regarding to CO2 Capture
    Garcia, Gregorio
    Atilhan, Mert
    Aparicio, Santiago
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (37): : 21413 - 21425
  • [37] Efficient CO2 fixation by surface Prochlorococcus in the Atlantic Ocean
    Hartmann, Manuela
    Gomez-Pereira, Paola
    Grob, Carolina
    Ostrowski, Martin
    Scanlan, David J.
    Zubkov, Mikhail V.
    ISME JOURNAL, 2014, 8 (11): : 2280 - 2289
  • [38] Physicochemical Properties and Applications of Deep Eutectic Solvents for CO2 Capture
    Biswas, Rima
    CHEMICAL ENGINEERING & TECHNOLOGY, 2024, 47 (01) : 20 - 35
  • [39] Efficient CO2 fixation by surface Prochlorococcus in the Atlantic Ocean
    Manuela Hartmann
    Paola Gomez-Pereira
    Carolina Grob
    Martin Ostrowski
    David J Scanlan
    Mikhail V Zubkov
    The ISME Journal, 2014, 8 : 2280 - 2289
  • [40] DEGRADATION STUDY OF DEEP EUTECTIC SOLVENTS IN CO2 CAPTURE TECHNOLOGIES
    Brettfeld, Eliza Gabriela
    Oancea, Florin
    Dincă, Cristian
    UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 2023, 85 (01): : 89 - 100