Random phase approximation in a self-consistent covariant approach: recent applications

被引:1
|
作者
Liang, Haozhao [1 ,2 ,3 ]
Niu, Yifei [1 ,4 ]
Meng, Jie [1 ,5 ,6 ]
Nguyen Van Giai [2 ,3 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[2] CNRS, IN2P3, Inst Phys Nucl, F-91406 Orsay, France
[3] Univ Paris 11, F-91406 Orsay, France
[4] Univ Zagreb, Fac Sci, Dept Phys, Zagreb, Croatia
[5] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China
[6] Univ Stellenbosch, Dept Phys, Stellenbosch, South Africa
关键词
NUCLEI; ISOSPIN;
D O I
10.1088/1742-6596/267/1/012042
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The relativistic Hartree-Fock (RHF) and Random Phase Approximation (RPA) methods are self-consistently applied to two issues of current interest. The first application is related to the isospin mixing corrections in the problem of super-allowed 0(+) -> 0(+) beta-transitions and the unitarity of the CKM matrix. The second application concerns the prediction of inclusive neutrino-nucleus cross-sections, where the results of the present model are compared with other approaches.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] SELF-CONSISTENT RANDOM PHASE APPROXIMATION
    OSTLUND, N
    KARPLUS, M
    CHEMICAL PHYSICS LETTERS, 1971, 11 (04) : 450 - &
  • [2] SELF-CONSISTENT FORM OF THE RANDOM PHASE APPROXIMATION
    ANTSYGINA, TN
    SLYUSAREV, VA
    SVIDZINSKII, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1989, 81 (02) : 1215 - 1221
  • [3] The number self-consistent renormalized random phase approximation
    Mariano, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (30-31): : 5334 - 5337
  • [4] Limitations of the number self-consistent random phase approximation
    Mariano, A
    Hirsch, JG
    PHYSICAL REVIEW C, 2000, 61 (05): : 7
  • [5] The number self-consistent renormalized random phase approximation
    Mariano, A.
    RECENT PROGRESS IN MANY-BODY THEORIES, PROCEEDINGS, 2006, 10 : 380 - +
  • [6] Separable random phase approximation for self-consistent nuclear models
    Nesterenko, VO
    Kvasil, J
    Reinhard, PG
    PHYSICAL REVIEW C, 2002, 66 (04):
  • [7] Comparison between wave functions in the random phase approximation, renormalized random phase approximation, and self-consistent random phase approximation methods
    Hirsch, JG
    Civitarese, O
    Reboiro, M
    PHYSICAL REVIEW C, 1999, 60 (02): : 5
  • [8] Analytic energy gradients for the self-consistent direct random phase approximation
    Thierbach, Adrian
    Goerling, Andreas
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (13):
  • [9] Accurate Correlation Potentials from the Self-Consistent Random Phase Approximation
    Trushin, Egor
    Fauser, Steffen
    Moelkner, Andreas
    Erhard, Jannis
    Goerling, Andreas
    PHYSICAL REVIEW LETTERS, 2025, 134 (01)
  • [10] Self-consistent random phase approximation in a schematic field theoretical model
    Bertrand, T
    Schuck, P
    Chanfray, G
    Aouissat, Z
    Dukelsky, J
    PHYSICAL REVIEW C, 2001, 63 (02): : 8