Solving one-dimensional moving-boundary problems with meshless method

被引:0
|
作者
Vrankar, Leopold [1 ]
Kansa, Edward J. [2 ]
Turk, Goran [3 ]
Runovc, Franc [4 ]
机构
[1] Slovenian Nucl Safety Adm, Zelezna Cesta 16, Ljubljana 1001, Slovenia
[2] Univ Calif, Dept Mech & Aeronaut Engn, Oakland, CA USA
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Ljubljana, Slovenia
[4] Univ Ljubljana, Fac Nat Sci Engn, Ljubljana, Slovenia
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:672 / +
页数:2
相关论文
共 50 条
  • [21] A METHOD FOR SOLVING MOVING BOUNDARY-PROBLEMS
    TAO, LN
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (02) : 254 - 264
  • [22] Perturbative method for solving elastic problems of one-dimensional hexagonal quasicrystals
    Peng, YZ
    Fan, TY
    Jiang, FR
    Zhang, WG
    Sun, YF
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (18) : 4123 - 4128
  • [23] ANALYTICAL METHOD FOR SOLVING GEOMETRIC ONE-DIMENSIONAL FREEZING OR MELTING PROBLEMS
    LIN, S
    [J]. MECHANICAL ENGINEERING, 1974, 96 (04): : 82 - 82
  • [24] Valuing Switching options with the moving-boundary method
    Dabadghao, Shaunak S.
    Chockalingam, Arun
    Soltani, Taimaz
    Fransoo, Jan
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2021, 127
  • [25] NEW METHOD FOR SOLVING ENERGY-BALANCE EQUATION FOR MOVING-BOUNDARY AC ARCS
    LEE, HE
    MESSERLE, HK
    STOKES, AD
    [J]. PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1975, 122 (02): : 227 - 231
  • [26] A new approach for solving one-dimensional fractional boundary value problems via Haar wavelet collocation method
    Jong, KumSong
    Choi, HuiChol
    Jang, KyongJun
    Pak, SunAe
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 160 : 313 - 330
  • [27] A Monte Carlo method for solving the one-dimensional telegraph equations with boundary conditions
    Acebron, Juan A.
    Ribeiroa, Marco A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 305 : 29 - 43
  • [28] THE METHOD OF LINES FOR RECONSTRUCTING A MOVING BOUNDARY IN ONE-DIMENSIONAL HEAT CONDUCTION PROBLEM
    Liu, Ji-Chuan
    Wei, Ting
    [J]. COMPUTATIONAL THERMAL SCIENCES, 2011, 3 (02): : 133 - 143
  • [29] ON A PROBABILISTIC METHOD OF SOLVING A ONE-DIMENSIONAL INITIAL-BOUNDARY VALUE PROBLEM
    Ibragimov, I. A.
    Smorodina, N. V.
    Faddeev, M. M.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2014, 58 (02) : 242 - 263
  • [30] Reduction of Numerical Oscillations in Simulating Moving-Boundary Problems by the Local DFD Method
    Zhang, Yang
    Zhou, Chunhua
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (01) : 145 - 165