Interaction of zirconia with magnesium hydride and its influence on the hydrogen storage behavior of magnesium hydride

被引:11
|
作者
Pukazhselvan, D. [1 ]
Silva, David Alexandre Reis [1 ]
Sandhya, K. S. [2 ,3 ]
Fateixa, Sara [4 ]
Shaula, Aliaksandr [1 ]
Nogueira, Helena
Bdikin, Igor [1 ]
Fagg, Duncan Paul [1 ]
机构
[1] Univ Aveiro, Ctr Mech Technol & Automat TEMA, Dept Mech Engn, Nanoengn Res Grp, P-3810193 Aveiro, Portugal
[2] Malankara Catholic Coll, Dept Chem, Kaliyakkavilai 629153, Tamil Nadu, India
[3] Univ Kerala, Dept Computat Biol & Bioinformat, Thiruvananthapuram 695581, Kerala, India
[4] Univ Aveiro, Dept Chem, CICECO, P-3810193 Aveiro, Portugal
关键词
Hydrogen storage; Binary hydrides; Metal oxides; Additives; Nanocatalysis; SORPTION KINETICS; DEHYDROGENATION KINETICS; ROOM-TEMPERATURE; METAL-OXIDES; MGH2; NANOPARTICLES; IMPROVEMENT; COMPOSITE; NB2O5; SIZE;
D O I
10.1016/j.ijhydene.2022.04.290
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study demonstrates how zirconia additive transforms to zirconium hydride and substantially lowers the dehydrogenation temperature of magnesium hydride. We prepared MgH2+xZrO(2) (x = 0.125 and 0.5) powder samples reacted for 15 min, 1 h, 5 h, 10 h, 15 h, 20 h and 25 h, and monitored the phase changes at each stage of the reaction. Differential scanning calorimetry (DSC) study provides the first crucial evidence regarding the chemical transformation of zirconia. Subsequently, detailed additional sample testing by X-ray diffraction (XRD), energy dispersive x-ray spectroscopy and confocal Raman microscopy provide strong supports that low temperature dehydrogenation of magnesium hydride is a result of formation of an active in situ product (zirconium hydride). This observation is validated by the negative Gibbs free energy values obtained for the formation of zirconium hydride over a broad working temperature range of 0-600 degrees C. Scanning electron microscopy (SEM) results prove the high dispersion of tiny nanoparticles all across the surface after the chemical interaction between MgH2 and ZrO2 and atomic force microscopy (AFM) study further proves that objects with grain sizes of similar to 10 nm are abundant throughout the scanned surfaces. These observations reiterate that better metal oxide additives interact with MgH2 and results to the evolution of highly active insitu nanocatalysts. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:21760 / 21771
页数:12
相关论文
共 50 条
  • [1] The interaction of hydrogen with oxidic promoters of hydrogen storage in magnesium hydride
    Dolci, Francesco
    Di Chio, Marco
    Baricco, Marcello
    Giamello, Elio
    [J]. MATERIALS RESEARCH BULLETIN, 2009, 44 (01) : 194 - 197
  • [2] STUDIES ON HYDROGEN STORAGE IN THE MAGNESIUM MAGNESIUM HYDRIDE SYSTEM
    KLOSE, W
    STUKE, V
    [J]. CHEMIE INGENIEUR TECHNIK, 1992, 64 (04) : 360 - 361
  • [3] Hydrogen Storage in Magnesium Hydride: The Molecular Approach
    Harder, Sjoerd
    Spielmann, Jan
    Intemann, Julia
    Bandmann, Heinz
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (18) : 4156 - 4160
  • [4] NANOSTRUCTURED MAGNESIUM HYDRIDE FOR REVERSIBLE HYDROGEN STORAGE
    De Rango, P.
    Chaise, A.
    Fruchart, D.
    Miraglia, S.
    Marty, Ph.
    [J]. PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES, 2013, : 491 - 494
  • [5] Magnesium-hydride slurry technology for hydrogen storage
    Krishnan, A
    Lu, XG
    Pal, UB
    McClaine, AW
    [J]. Materials for Hydrogen Storage-2004, 2005, 837 : 143 - 149
  • [6] Nano-engineering of magnesium hydride for hydrogen storage
    Bystrzycki, J.
    Plocinski, T.
    Zielinski, W.
    Wisniewski, Z.
    Polanski, M.
    Mroz, W.
    Bojar, Z.
    Kurzdlowski, K. J.
    [J]. MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) : 889 - 891
  • [7] MAGNESIUM HYDRIDE SLURRY - A BETTER ANSWER TO HYDROGEN STORAGE
    McClaine, Andrew W.
    Brown, Kenneth
    Bowen, David D. G.
    [J]. PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2014, VOL 1, 2014,
  • [8] Structure modification of magnesium hydride for solid hydrogen storage
    Hong, Haoliang
    Guo, Hangzuo
    Cui, Zhanfeng
    Ball, Anthony
    Nie, Binjian
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 78 : 793 - 804
  • [9] Magnesium Hydride Slurry: A Better Answer to Hydrogen Storage
    McClaine, Andrew W.
    Brown, Kenneth
    Bowen, David D. G.
    [J]. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2015, 137 (06):
  • [10] The influence of grain size and catalytic doping on magnesium hydride nanocrystals for hydrogen storage
    Zhang, Liuting
    Tian, Guibin
    Wu, Fuying
    Liu, Meijia
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 178