Vortex Boundary Identification using Convolutional Neural Network

被引:14
|
作者
Berenjkoub, Marzieh [1 ,2 ]
Chen, Guoning [1 ]
Gunther, Tobias [3 ]
机构
[1] Univ Houston, Houston, TX 77004 USA
[2] Nvidia Inc, Santa Clara, CA 95051 USA
[3] FAU Erlangen Nurnberg, Erlangen, Germany
基金
瑞士国家科学基金会;
关键词
Vortex boundary; convolutional neural network; OF-THE-ART; VISUALIZATION; DYNAMICS; REGIONS;
D O I
10.1109/VIS47514.2020.00059
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Feature extraction is an integral component of scientific visualization, and specifically in situations in which features are difficult to formalize, deep learning has great potential to aid in data analysis. In this paper, we develop a deep neural network that is capable of finding vortex boundaries. For training data generation, we employ a parametric flow model that generates thousands of vector field patches with known ground truth. Compared to previous methods, our approach does not require the manual setting of a threshold in order to generate the training data or to extract the vortices. After supervised learning, we apply the method to numerical fluid flow simulations, demonstrating its applicability in practice. Our results show that the vortices extracted using the proposed method can capture more accurate behavior of the vortices in the flow.
引用
收藏
页码:261 / 265
页数:5
相关论文
共 50 条
  • [31] Automatic Identification of Mantle Seismic Phases Using a Convolutional Neural Network
    Garcia, J. A.
    Waszek, L.
    Tauzin, B.
    Schmerr, N.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (18)
  • [32] Germinative paddy seed identification using deep convolutional neural network
    Islam, Mohammad Aminul
    Hassan, Md. Rakib
    Uddin, Machbah
    Shajalal, Md
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 39481 - 39501
  • [33] Identification of Glioma from MR Images Using Convolutional Neural Network
    Saxena, Nidhi
    Sharma, Rochan
    Joshi, Karishma
    Rana, Hukum Singh
    [J]. PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2018, VOL 1, 2019, 880 : 589 - 597
  • [34] Germinative paddy seed identification using deep convolutional neural network
    Mohammad Aminul Islam
    Md. Rakib Hassan
    Machbah Uddin
    Md Shajalal
    [J]. Multimedia Tools and Applications, 2023, 82 : 39481 - 39501
  • [35] Tumor Identification in Colorectal Histology Images Using a Convolutional Neural Network
    Yoon, Hongjun
    Lee, Joohyung
    Oh, Ji Eun
    Kim, Hong Rae
    Lee, Seonhye
    Chang, Hee Jin
    Sohn, Dae Kyung
    [J]. JOURNAL OF DIGITAL IMAGING, 2019, 32 (01) : 131 - 140
  • [36] Text-independent writer identification using convolutional neural network
    Hung Tuan Nguyen
    Cuong Tuan Nguyen
    Ino, Takeya
    Indurkhya, Bipin
    Nakagawa, Masaki
    [J]. PATTERN RECOGNITION LETTERS, 2019, 121 : 104 - 112
  • [37] Holder and Target Identification on Opinion Text using Convolutional Neural Network
    Ikhsan, Moh. Mirza Maulana
    Ruskanda, Fariska Zakhralativa
    [J]. 2022 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBERNETICS TECHNOLOGY & APPLICATIONS (ICICYTA), 2022, : 222 - 227
  • [38] Identification of enamel demineralization using high performance convolutional neural network
    Caramel-Juvino, Amanda
    Farooq, Sajid
    Romano, Mariana
    Zezell, Denise Maria
    [J]. 2022 SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE (SBFOTON IOPC), 2022,
  • [39] Contaminated Facade Identification Using Convolutional Neural Network and Image Processing
    Lee, Jiseok
    Hong, Jooyoung
    Park, Garam
    Kim, Hwa Soo
    Lee, Sungon
    Seo, TaeWon
    [J]. IEEE ACCESS, 2020, 8 : 180010 - 180021
  • [40] LEARNING A REPRESENTATION FOR COVER SONG IDENTIFICATION USING CONVOLUTIONAL NEURAL NETWORK
    Yu, Zhesong
    Xu, Xiaoshuo
    Chen, Xiaoou
    Yang, Deshun
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 541 - 545