Controllability of multi-term time-fractional differential systems

被引:19
|
作者
Singh, Vikram [1 ]
Pandey, Dwijendra N. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
Fractional calculus; exact controllability; multi-term time-fractional delay differential system; measure of noncompactness; SEMILINEAR CONTROL-SYSTEMS; APPROXIMATE CONTROLLABILITY; EQUATIONS;
D O I
10.1080/23307706.2018.1495584
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an abstract multi-term time-fractional differential system is considered and the exact controllability results are investigated. In this theory, we tend to implement the basic tools of fractional calculus and measure of noncompactness to come up with a new set of sufficient conditions for the exact controllability by utilisation of Monch fixed point theorem. Finally, an application is given to illustrate the obtained results.
引用
收藏
页码:109 / 125
页数:17
相关论文
共 50 条
  • [41] ABSTRACT MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS
    Li, C. -G.
    Kostic, M.
    Li, M.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (01): : 51 - 71
  • [42] A high-order spectral method for the multi-term time-fractional diffusion equations
    Zheng, M.
    Liu, F.
    Anh, V.
    Turner, I.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4970 - 4985
  • [43] A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations
    Mahmoud A. Zaky
    Computational and Applied Mathematics, 2018, 37 : 3525 - 3538
  • [44] Numerical methods for the two-dimensional multi-term time-fractional diffusion equations
    Zhao, Linlin
    Liu, Fawang
    Anh, Vo V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2253 - 2268
  • [45] A computational procedure and analysis for multi-term time-fractional Burgers-type equation
    Kanth, Ravi A. S., V
    Garg, Neetu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9218 - 9232
  • [46] A transformed L 1 method for solving the multi-term time-fractional diffusion problem
    She, Mianfu
    Li, Dongfang
    Sun, Hai-wei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 193 : 584 - 606
  • [47] Initial-boundary value problems for multi-term time-fractional wave equations
    Chung-Sik Sin
    Jin-U Rim
    Hyon-Sok Choe
    Fractional Calculus and Applied Analysis, 2022, 25 : 1994 - 2019
  • [48] A Weak Galerkin Finite Element Method for Multi-Term Time-Fractional Diffusion Equations
    Zhou, Jun
    Xu, Da
    Chen, Hongbin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 181 - 193
  • [49] Initial-boundary value problems for multi-term time-fractional wave equations
    Sin, Chung-Sik
    Rim, Jin-U
    Choe, Hyon-Sok
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (05) : 1994 - 2019
  • [50] Multi-term time-fractional diffusion equation and system: mild solutions and critical exponents
    Kassymov, Aidyn
    Tokmagambetov, Niyaz
    Torebek, Berikbol
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 295 - 321