Mixed conducting components of solid oxide fuel cell anodes

被引:33
|
作者
Tsipis, EV [1 ]
Kharton, VV [1 ]
Frade, JR [1 ]
机构
[1] Univ Aveiro, CICECO, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal
关键词
composites; electrical properties; ionic conductivity; fuel cells; cermet anode;
D O I
10.1016/j.jeurceramsoc.2005.03.114
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Developments of intermediate-temperature solid oxide fuel cells (IT SOFCs) require novel anode materials with high electrochemical activity at 800-1070 K. In order to assess the role of oxide components of Ni- and Cu-containing cermets, a series of electrodes containing 8% yttria-stabilized zirconia (Y8SZ), Ce0.8Gd0.2O2-delta (CGO) and TbZrO4-delta with fluorite-related structure, zircon-type Ce0.8Ca0.2VO4+delta, pyrochlore Gd1.86Ca0.14Ti2O7-delta (GCTO), and La0.9Sr0.1Al0.65Mg0.15Fe0.20O3-delta perovskite, were studied in contact with (La0.9Sr0.1)(0.98)Ga0.8Mg0.2O3-delta (LSGM) electrolyte. The best performance was found for anodes comprising a stable ion-conducting component, such as Y8SZ or GCTO, and one Ce-containing phase, such as CGO or cerium vanadate. Anode performance is less dependent on the ionic conductivity of oxide components than on redox stability or interaction between different cell materials. Surface modification with ceria substantially reduces overpotentials of all cermet anodes. For Ni-CGO and Cu-CGO, such activation of yields about 100-115 mV at 1073 K and 200 mA/cm(2) in 10% H-2-90% N-2 for both anodes. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2623 / 2626
页数:4
相关论文
共 50 条
  • [21] Fabrication and characterization of microtubular solid oxide cell supported with nanostructured mixed conducting perovskite fuel electrode
    Yun Gan
    Chunlei Ren
    Myongjin Lee
    Chunyang Yang
    Xingjian Xue
    [J]. Journal of Solid State Electrochemistry, 2018, 22 : 2929 - 2943
  • [22] Fabrication and characterization of microtubular solid oxide cell supported with nanostructured mixed conducting perovskite fuel electrode
    Gan, Yun
    Ren, Chunlei
    Lee, Myongjin
    Yang, Chunyang
    Xue, Xingjian
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (09) : 2929 - 2943
  • [23] Degradation of solid oxide fuel cell anodes by the deposition of potassium compounds
    Zhang, Hui
    Yoshiie, Ryo
    Naruse, Ichiro
    Ueki, Yasuaki
    [J]. CARBON RESOURCES CONVERSION, 2024, 7 (04):
  • [24] STRUCTURE AND POLARIZATION CHARACTERISTICS OF SOLID OXIDE FUEL-CELL ANODES
    KAWADA, T
    SAKAI, N
    YOKOKAWA, H
    DOKIYA, M
    MORI, M
    IWATA, T
    [J]. SOLID STATE IONICS, 1990, 40-1 : 402 - 406
  • [25] Gas diffusion impedance in characterization of solid oxide fuel cell anodes
    Primdahl, S
    Mogensen, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (08) : 2827 - 2833
  • [26] Hydrogen Oxidation Mechanisms on Perovskite Solid Oxide Fuel Cell Anodes
    Zhu, Tenglong
    Fowler, Daniel E.
    Poeppelmeier, Kenneth R.
    Han, Minfang
    Barnett, Scott A.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) : F952 - F961
  • [27] A Comparison of Molten Sn and Bi for Solid Oxide Fuel Cell Anodes
    Jayakumar, A.
    Lee, S.
    Hornes, A.
    Vohs, J. M.
    Gorte, R. J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) : B365 - B369
  • [28] Nanostructured anodes for solid oxide fuel cells
    Gorte, R. J.
    Vohs, J. M.
    [J]. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2009, 14 (04) : 236 - 244
  • [29] Synthesis and Characterisation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell
    Kim, Yu-Mi
    Pyun, Su-Il
    Lee, Gyoung-Ja
    Kim, Ju-Sik
    [J]. JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2007, 10 (02): : 116 - 125
  • [30] Modeling and Bifurcation Analysis of a Coionic Conducting Solid Oxide Fuel Cell
    Bavarian, Mona
    Kevrekidis, Ioannis G.
    Benziger, Jay B.
    Soroush, Masoud
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (09) : 3165 - 3177