Sliding Shilnikov connection in Filippov-type predator-prey model

被引:17
|
作者
Carvalho, Tiago [1 ]
Novaes, Douglas Duarte [2 ]
Goncalves, Luiz Fernando [3 ]
机构
[1] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Comp & Matemat, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP, Brazil
[2] Univ Estadual Campinas, Dept Matemat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[3] Univ Estadual Paulista, UNESP, Inst Biociencias Letras & Ciencias Exatas, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Prey switching model; Piecewise smooth vector fields; Shilnikov connection; Sliding dynamics; Chaos; FREQUENCY-DEPENDENT SELECTION; EXISTENCE; DYNAMICS; ECOLOGY; SYSTEMS; CHAOS;
D O I
10.1007/s11071-020-05672-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Recently, a piecewise smooth differential system was derived as a model of a 1 predator-2 prey interaction where the predator feeds adaptively on its preferred prey and an alternative prey. In such a model, strong evidence of chaotic behavior was numerically found. Here, we revisit this model and prove the existence of a Shilnikov sliding connection when the parameters are taken in a codimension one submanifold of the parameter space. As a consequence of this connection, we conclude, analytically, that the model behaves chaotically for an open region of the parameter space.
引用
收藏
页码:2973 / 2987
页数:15
相关论文
共 50 条
  • [1] Sliding Shilnikov connection in Filippov-type predator–prey model
    Tiago Carvalho
    Douglas Duarte Novaes
    Luiz Fernando Gonçalves
    [J]. Nonlinear Dynamics, 2020, 100 : 2973 - 2987
  • [2] Global asymptotical stability and sliding bifurcation analysis of a general Filippov-type predator-prey model with a refuge
    Li, Wenxiu
    Huang, Lihong
    Wang, Jiafu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 405
  • [3] Sliding bifurcation analysis and global dynamics for a Filippov predator-prey system
    Tan, Xuewen
    Qin, Wenjie
    Liu, Xinzhi
    Yang, Jin
    Jiang, Shaoping
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3948 - 3961
  • [4] Bifurcation analysis of a Filippov predator-prey model with two thresholds
    Li, Wenxiu
    [J]. NONLINEAR DYNAMICS, 2024, 112 (11) : 9639 - 9656
  • [5] Nonsmooth dynamics of a Filippov predator-prey ecological model with antipredator behavior
    Huang, Lidong
    Qin, Wenjie
    Chen, Shuai
    [J]. ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [6] The Filippov Approach for Predator-Prey System Involving Mixed Type of Functional Responses
    Gupta, Komal
    Gakkhar, Sunita
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (02) : 273 - 293
  • [7] The Filippov Approach for Predator-Prey System Involving Mixed Type of Functional Responses
    Komal Gupta
    Sunita Gakkhar
    [J]. Differential Equations and Dynamical Systems, 2020, 28 : 273 - 293
  • [8] Dynamics of a ricker type predator-prey model
    Hamada, M. Y.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024,
  • [9] Global dynamics of a filippov predator-prey model with two thresholds for integrated pest management
    Li, Wenxiu
    Chen, Yuming
    Huang, Lihong
    Wang, Jiafu
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 157
  • [10] A FILIPPOV TYPE PREDATOR PREY SYSTEM WITH SELECTIVE HARVESTING OF PREDATOR
    Yadav, Uganta
    Gakkhar, Sunita
    Nayak, Ameeya
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (11): : 5755 - 5774