A Framework for Meta-Analysis of Veterinary Drug Pharmacokinetic Data Using Mixed Effect Modeling

被引:26
|
作者
Li, Mengjie [1 ]
Gehring, Ronette [1 ]
Lin, Zhoumeng [1 ]
Riviere, Jim [1 ]
机构
[1] Kansas State Univ, Coll Vet Med, Inst Computat Comparat Med, Manhattan, KS 66506 USA
关键词
meta-analysis; nonlinear mixed-effect modeling; pharmacokinetics; population pharmacokinetics; veterinary medicine; drug depletion; drug withdrawal time; clearance; distribution; formulation; MONTE-CARLO-SIMULATION; AVOIDANCE-DATA-BANK; POPULATION PHARMACOKINETICS; EXTRALABEL USE; METABOLITE CIPROFLOXACIN; WITHDRAWAL TIMES; BASIC CONCEPTS; YOUNG CATTLE; FLUNIXIN; PENICILLIN;
D O I
10.1002/jps.24341
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Combining data from available studies is a useful approach to interpret the overwhelming amount of data generated in medical research from multiple studies. Paradoxically, in veterinary medicine, lack of data requires integrating available data to make meaningful population inferences. Nonlinear mixed-effects modeling is a useful tool to apply meta-analysis to diverse pharmacokinetic (PK) studies of veterinary drugs. This review provides a summary of the characteristics of PK data of veterinary drugs and how integration of these data may differ from human PK studies. The limits of meta-analysis include the sophistication of data mining, and generation of misleading results caused by biased or poor quality data. The overriding strength of meta-analysis applied to this field is that robust statistical analysis of the diverse sparse data sets inherent to veterinary medicine applications can be accomplished, thereby allowing population inferences to be made. (C) 2015 Wiley Periodicals, Inc. and the American Pharmacists Association
引用
收藏
页码:1230 / 1239
页数:10
相关论文
共 50 条
  • [1] Use of nonlinear mixed effect modeling for the meta-analysis of preclinical pharmacokinetic data: Application to S 20342 in the rat
    Bouzom, F
    Laveille, C
    Merdjan, H
    Jochemsen, R
    [J]. JOURNAL OF PHARMACEUTICAL SCIENCES, 2000, 89 (05) : 603 - 613
  • [2] Meta-analysis of pharmacokinetic data of veterinary drugs using the Food Animal Residue Avoidance Databank: oxytetracycline and procaine penicillin G
    Craigmill, AL
    Miller, GR
    Gehring, R
    Pierce, AN
    Riviere, JE
    [J]. JOURNAL OF VETERINARY PHARMACOLOGY AND THERAPEUTICS, 2004, 27 (05) : 343 - 353
  • [3] A Framework for Meta-Analysis of Cytometry Data
    Jujjavarapu, Chethan
    Hughey, Jacob
    Gherardini, Federico
    Bruggner, Robert
    Nolan, Garry
    Bhattacharya, Sanchita
    Butte, Atul
    [J]. JOURNAL OF IMMUNOLOGY, 2016, 196
  • [4] An extended mixed-effects framework for meta-analysis
    Sera, Francesco
    Armstrong, Benedict
    Blangiardo, Marta
    Gasparrini, Antonio
    [J]. STATISTICS IN MEDICINE, 2019, 38 (29) : 5429 - 5444
  • [5] A Bayesian Meta-Analysis on Published Sample Mean and Variance Pharmacokinetic Data with Application to Drug-Drug Interaction Prediction
    Yu, Menggang
    Kim, Seongho
    Wang, Zhiping
    Hall, Stephen
    Li, Lang
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2008, 18 (06) : 1063 - 1083
  • [6] Controversial use of meta-analysis for factor VIII pharmacokinetic data
    Lee, ML
    Morfini, M
    [J]. HAEMOPHILIA, 2003, 9 (06) : 746 - 747
  • [7] Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach
    Cheng, Yi-Hsien
    He, Chunla
    Riviere, Jim E.
    Monteiro-Riviere, Nancy A.
    Lin, Zhoumeng
    [J]. ACS NANO, 2020, 14 (03) : 3075 - 3095
  • [8] Meta-analysis of published data using a linear mixed-effects model
    Stram, DO
    [J]. BIOMETRICS, 1996, 52 (02) : 536 - 544
  • [9] Meta-analysis using linear mixed models
    Sheu, CF
    Suzuki, S
    [J]. BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 2001, 33 (02): : 102 - 107
  • [10] Meta-analysis using linear mixed models
    Ching-Fan Sheu
    Sawako Suzuki
    [J]. Behavior Research Methods, Instruments, & Computers, 2001, 33 : 102 - 107