An extended mixed-effects framework for meta-analysis

被引:156
|
作者
Sera, Francesco [1 ,2 ]
Armstrong, Benedict [1 ,2 ]
Blangiardo, Marta [3 ]
Gasparrini, Antonio [1 ,2 ]
机构
[1] London Sch Hyg & Trop Med, Dept Publ Hlth Environm & Soc, 15-17 Tavistock Pl, London WC1H 9SH, England
[2] London Sch Hyg & Trop Med, Ctr Stat Methodol, London, England
[3] Imperial Coll London, Dept Epidemiol & Biostat, London, England
基金
英国医学研究理事会;
关键词
dose-response; longitudinal; meta-analysis; mixed-effects models; GENERALIZED LEAST-SQUARES; MULTIVARIATE METAANALYSIS; MULTIPLE OUTCOMES; MULTILEVEL MODELS; REGRESSION-MODEL; TREND ESTIMATION; LINEAR-MODEL; 2-STAGE; INCONSISTENCY; CONSISTENCY;
D O I
10.1002/sim.8362
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Standard methods for meta-analysis are limited to pooling tasks in which a single effect size is estimated from a set of independent studies. However, this setting can be too restrictive for modern meta-analytical applications. In this contribution, we illustrate a general framework for meta-analysis based on linear mixed-effects models, where potentially complex patterns of effect sizes are modeled through an extended and flexible structure of fixed and random terms. This definition includes, as special cases, a variety of meta-analytical models that have been separately proposed in the literature, such as multivariate, network, multilevel, dose-response, and longitudinal meta-analysis and meta-regression. The availability of a unified framework for meta-analysis, complemented with the implementation in a freely available and fully documented software, will provide researchers with a flexible tool for addressing nonstandard pooling problems.
引用
收藏
页码:5429 / 5444
页数:16
相关论文
共 50 条
  • [1] Testing Categorical Moderators in Mixed-Effects Meta-analysis in the Presence of Heteroscedasticity
    Rubio-Aparicio, Maria
    Antonio Lopez-Lopez, Jose
    Viechtbauer, Wolfgang
    Marin-Martinez, Fulgencio
    Botella, Juan
    Sanchez-Meca, Julio
    [J]. JOURNAL OF EXPERIMENTAL EDUCATION, 2020, 88 (02): : 288 - 310
  • [2] Individual participant data meta-analysis with mixed-effects transformation models
    Tamasi, Balint
    Crowther, Michael
    Puhan, Milo Alan
    Steyerberg, Ewout W.
    Hothorn, Torsten
    [J]. BIOSTATISTICS, 2022, 23 (04) : 1083 - 1098
  • [3] Dimension reduction and mixed-effects model for microarray meta-analysis of cancer
    Yu, Tianwei
    Ye, Hui
    Chen, Zugen
    Ziober, Barry L.
    Zhou, Xiaofeng
    [J]. FRONTIERS IN BIOSCIENCE-LANDMARK, 2008, 13 : 2714 - 2720
  • [4] Meta-analysis of published data using a linear mixed-effects model
    Stram, DO
    [J]. BIOMETRICS, 1996, 52 (02) : 536 - 544
  • [5] Heterogeneous heterogeneity by default: Testing categorical moderators in mixed-effects meta-analysis
    Rodriguez, Josue E.
    Williams, Donald R.
    Buerkner, Paul-Christian
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2023, 76 (02): : 402 - 433
  • [6] Dialectical Behavior Therapy for Borderline Personality Disorder: A Meta-Analysis Using Mixed-Effects Modeling
    Kliem, Soeren
    Kroeger, Christoph
    Kosfelder, Joachim
    [J]. JOURNAL OF CONSULTING AND CLINICAL PSYCHOLOGY, 2010, 78 (06) : 936 - 951
  • [7] Improving Analgesic Efficacy and Safety of Thoracic Paravertebral Block for Breast Surgery: A Mixed-Effects Meta-Analysis
    Terkawi, Abdullah S.
    Tsang, Siny
    Sessler, Daniel I.
    Terkawi, Rayan S.
    Nunemaker, Megan S.
    Durieux, Marcel E.
    Shilling, Ashley
    [J]. PAIN PHYSICIAN, 2015, 18 (05) : E757 - E780
  • [8] The Relationship Between Interpersonal Problems and Therapeutic Alliance in Psychotherapy: A Three-Level Mixed-Effects Meta-Analysis
    Iovoli, Flavio
    Flueckiger, Christoph
    Penedo, Juan Martin Gomez
    Engelhardt, Julia Hannah
    Kaschlaw, Hanh Hong
    Lauterbach, Ruben
    Wester, Robin A.
    Rubel, Julian A.
    [J]. PSYCHOTHERAPY, 2024, 61 (03) : 198 - 211
  • [9] Mixed-Effects Poisson Regression Models for Meta-Analysis of Follow-Up Studies with Constant or Varying Durations
    Bagos, Pantelis G.
    Nikolopoulos, Georgios K.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2009, 5 (01):
  • [10] Relationship between glucose infusion and milk protein concentration and yield in dairy cows: A mixed-effects meta-analysis
    Reyes, G. C.
    Ellis, J.
    Fox, M. K.
    Cant, J. P.
    [J]. JOURNAL OF DAIRY SCIENCE, 2022, 105 : 302 - 303