Optical-Field-Driven Electron Tunneling in Metal-Insulator-Metal Nanojunction

被引:6
|
作者
Zhou, Shenghan [1 ,2 ]
Guo, Xiangdong [1 ,2 ]
Chen, Ke [1 ,2 ]
Cole, Matthew Thomas [3 ]
Wang, Xiaowei [4 ]
Li, Zhenjun [1 ,2 ,5 ]
Dai, Jiayu [4 ]
Li, Chi [1 ,2 ]
Dai, Qing [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, CAS Key Lab Nanophoton Mat & Devices, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
[4] Natl Univ Def Technol, Dept Phys, Changsha 410073, Peoples R China
[5] GBA Res Innovat Inst Nanotechnol, Guangzhou 510700, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
high nonlinearity; MIM nanojunction; optical-field-driven tunneling; ultrafast electronics; ATTOSECOND CONTROL; EMISSION; PHOTOEMISSION;
D O I
10.1002/advs.202101572
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical-field driven electron tunneling in nanojunctions has made demonstrable progress toward the development of ultrafast charge transport devices at subfemtosecond time scales, and have evidenced great potential as a springboard technology for the next generation of on-chip "lightwave electronics." Here, the empirical findings on photocurrent the high nonlinearity in metal-insulator-metal (MIM) nanojunctions driven by ultrafast optical pulses in the strong optical-field regime are reported. In the present MIM device, a 14th power-law scaling is identified, never achieved before in any known solid-state device. This work lays important technological foundations for the development of a new generation of ultracompact and ultrafast electronics devices that operate with suboptical-cycle response times.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] RESONANT TUNNELING VIA LOCALIZED IMPURITY STATES IN METAL-INSULATOR-METAL JUNCTIONS
    CHRISTENSEN, NDS
    CHRISTENSEN, NE
    [J]. SOLID STATE COMMUNICATIONS, 1978, 27 (12) : 1259 - 1261
  • [42] Evidence for field emission in electroformed metal-insulator-metal devices
    Sharpe, RG
    Palmer, RE
    [J]. THIN SOLID FILMS, 1996, 288 (1-2) : 164 - 170
  • [43] ENERGY DISTRIBUTION OF ELECTRONS TUNNELING THROUGH A METAL-INSULATOR-METAL SANDWICH STRUCTURE
    KUMAGAI, Y
    KAWARADA, K
    SHIBATA, Y
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 1967, 6 (03) : 290 - &
  • [44] Metal-Insulator-Metal (MIM) Photodetection and Photon-assisted Tunneling (PAT)
    Sun, Shuo
    Banerjee, Partha P.
    Haus, Joseph W.
    [J]. QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XVI, 2019, 10926
  • [45] SCANNING TUNNELING MICROSCOPIC INVESTIGATIONS OF ELECTROFORMED PLANAR METAL-INSULATOR-METAL DIODES
    PAGNIA, H
    SOTNIK, N
    WIRTH, W
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 1990, 69 (01) : 25 - 32
  • [46] THEORY OF METAL-INSULATOR-METAL TUNNELING FOR A SIMPLE 2-BAND MODEL
    GUNDLACH, KH
    [J]. JOURNAL OF APPLIED PHYSICS, 1973, 44 (11) : 5005 - 5010
  • [47] Antenna-Coupled Metal-Insulator-Metal Tunneling Diode for Energy Harvesting
    Yesilkoy, Filiz
    Choi, Kwangsik
    Mittal, Sunil
    Peckerar, Martin
    Dagenais, Mario
    [J]. 2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 453 - 454
  • [48] DIRECT CALCULATION OF RESONANCE TUNNELING IN METAL-INSULATOR-METAL TUNNEL-JUNCTIONS
    KNAUER, H
    RICHTER, J
    SEIDEL, P
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1977, 44 (01): : 303 - 312
  • [49] DETERMINATION OF LOW-ENERGY BARRIERS IN METAL-INSULATOR-METAL TUNNELING JUNCTIONS
    GUNDLACH, KH
    [J]. SOLID-STATE ELECTRONICS, 1972, 15 (03) : 329 - &
  • [50] ONE-PARTICLE TUNNELING IN METAL-INSULATOR-METAL STRUCTURES - (A REVIEW) .1. ELECTRON-SPECTROSCOPY
    SVISTUNOV, VM
    BELOGOLOVSKII, MA
    DYACHENKO, AI
    [J]. PHYSICS OF METALS, 1985, 5 (04): : 646 - 660