Optical-Field-Driven Electron Tunneling in Metal-Insulator-Metal Nanojunction

被引:6
|
作者
Zhou, Shenghan [1 ,2 ]
Guo, Xiangdong [1 ,2 ]
Chen, Ke [1 ,2 ]
Cole, Matthew Thomas [3 ]
Wang, Xiaowei [4 ]
Li, Zhenjun [1 ,2 ,5 ]
Dai, Jiayu [4 ]
Li, Chi [1 ,2 ]
Dai, Qing [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, CAS Key Lab Nanophoton Mat & Devices, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
[4] Natl Univ Def Technol, Dept Phys, Changsha 410073, Peoples R China
[5] GBA Res Innovat Inst Nanotechnol, Guangzhou 510700, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
high nonlinearity; MIM nanojunction; optical-field-driven tunneling; ultrafast electronics; ATTOSECOND CONTROL; EMISSION; PHOTOEMISSION;
D O I
10.1002/advs.202101572
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical-field driven electron tunneling in nanojunctions has made demonstrable progress toward the development of ultrafast charge transport devices at subfemtosecond time scales, and have evidenced great potential as a springboard technology for the next generation of on-chip "lightwave electronics." Here, the empirical findings on photocurrent the high nonlinearity in metal-insulator-metal (MIM) nanojunctions driven by ultrafast optical pulses in the strong optical-field regime are reported. In the present MIM device, a 14th power-law scaling is identified, never achieved before in any known solid-state device. This work lays important technological foundations for the development of a new generation of ultracompact and ultrafast electronics devices that operate with suboptical-cycle response times.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] NONEQUILIBRIUM ELECTRON TUNNELING IN METAL-INSULATOR-METAL JUNCTIONS
    ADLER, JG
    KREUZER, HJ
    STRAUS, J
    [J]. PHYSICAL REVIEW B, 1975, 11 (08): : 2812 - 2820
  • [2] ELECTRON TUNNELING IN METAL-INSULATOR-METAL (MIM) STRUCTURES
    CRUZ, EL
    HELMAN, JS
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (03): : 248 - 248
  • [3] Combing a carbon nanotube on a flat metal-insulator-metal nanojunction
    Gerdes, S
    Ondarçuhu, T
    Cholet, S
    Joachim, C
    [J]. EUROPHYSICS LETTERS, 1999, 48 (03): : 292 - 298
  • [4] NONEQUILIBRIUM PHENOMENA IN ELECTRON TUNNELING IN NORMAL METAL-INSULATOR-METAL JUNCTIONS
    TROFIMENKOFF, PN
    WATTAMANIUK, WJ
    ADLER, JG
    KREUZER, HJ
    [J]. PHYSICAL REVIEW LETTERS, 1972, 29 (09) : 597 - +
  • [5] INELASTIC-ELECTRON-TUNNELING SPECTROSCOPY OF METAL-INSULATOR-METAL JUNCTIONS
    KLEIN, J
    LEGER, A
    BELIN, M
    DEFOURNEAU, D
    SANGSTER, MJ
    [J]. PHYSICAL REVIEW B, 1973, 7 (06) : 2336 - 2348
  • [6] Indirect tunneling in metal-insulator-metal junctions
    Fleurov, V
    Karpovski, M
    Molotskii, M
    Palevski, A
    Gladkikh, A
    Kris, R
    [J]. SOLID STATE COMMUNICATIONS, 1996, 97 (06) : 543 - 547
  • [7] MULTICHANNEL THEORY OF INELASTIC ELECTRON TUNNELING IN NORMAL METAL-INSULATOR-METAL JUNCTIONS
    ADLER, JG
    KREUZER, HJ
    WATTAMANIUK, WJ
    [J]. PHYSICAL REVIEW LETTERS, 1971, 27 (04) : 185 - +
  • [8] METAL-INSULATOR-METAL AND METAL-INSULATOR STRUCTURES AS ELECTRON SOURCES
    ECKERTOVA, L
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 1990, 69 (01) : 65 - 78
  • [10] Dark electron tunneling current in metal-insulator-metal structures: modeling, fabrication, and measurement
    Sun, Shuo
    Lawandi, Roseanna
    Sarangan, Andrew
    Banerjee, Partha P.
    [J]. OPTICAL ENGINEERING, 2022, 61 (02)