Results on certain types of q-shift difference polynomials

被引:1
|
作者
Waghamore, Harina P. [1 ]
Naveenkumar, S. H. [1 ]
机构
[1] Bangalore Univ, Dept Math, Jnanabharathi Campus, Bengaluru 560056, India
来源
JOURNAL OF ANALYSIS | 2020年 / 28卷 / 03期
关键词
Nevanlinna theory; Entire functions; Meromorphic functions; Sharing values; q-shift difference; Primary; 30D35; UNIQUENESS;
D O I
10.1007/s41478-019-00191-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with value distribution for q-shift difference polynomials of transcendental entire and meromorphic functions with zero order. The results of this paper improve the previous theorems given by Zhao and Zhang (J Contemp Math Anal 50(2):63-69, 2015).
引用
收藏
页码:733 / 740
页数:8
相关论文
共 50 条
  • [1] Results on certain types of q-shift difference polynomials
    Harina P. Waghamore
    S. H. Naveenkumar
    [J]. The Journal of Analysis, 2020, 28 : 733 - 740
  • [2] Uniqueness and zeros of q-shift difference polynomials
    Liu, Kai
    Liu, Xin-Ling
    Cao, Ting-Bin
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (03): : 301 - 310
  • [3] Uniqueness and zeros of q-shift difference polynomials
    KAI LIU
    XIN-LING LIU
    TING-BIN CAO
    [J]. Proceedings - Mathematical Sciences, 2011, 121 : 301 - 310
  • [4] The zeros of q-shift difference polynomials of meromorphic functions
    Junfeng Xu
    Xiaobin Zhang
    [J]. Advances in Difference Equations, 2012
  • [5] The zeros of q-shift difference polynomials of meromorphic functions
    Xu, Junfeng
    Zhang, Xiaobin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012, : 1 - 10
  • [6] Uniqueness of differential q-shift difference polynomials of entire functions
    Mathai, Madhura M.
    Manjalapur, Vinayak V.
    [J]. JOURNAL OF ANALYSIS, 2021, 29 (04): : 1117 - 1127
  • [7] Zeros and shared one value of q-shift difference polynomials
    Q. Zhao
    J. Zhang
    [J]. Journal of Contemporary Mathematical Analysis, 2015, 50 : 63 - 69
  • [8] Zeros and Shared One Value of q-shift Difference Polynomials
    Zhao, Q.
    Zhang, J.
    [J]. Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences, 2015, 50 (02): : 63 - 69
  • [9] Uniqueness of differential q-shift difference polynomials of entire functions
    Madhura M. Mathai
    Vinayak V. Manjalapur
    [J]. The Journal of Analysis, 2021, 29 : 1117 - 1127
  • [10] The solutions of some types of q-shift difference differential equations
    Wang, Hua
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (05) : 955 - 966