Wavelet-based graph inference using multiple testing

被引:1
|
作者
Achard, Sophie [1 ]
Borgnat, Pierre [2 ]
Gannaz, Irene [3 ]
Roux, Marine [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
[2] UCB Lyon 1, Labe Phys, Univ Lyon, ENS Lyon,CNRS, F-69342 Lyon, France
[3] Univ Lyon, Inst Camille Jordan, CNRS, INSA Lyon,UMR 5208, F-69621 Villeurbanne, France
来源
WAVELETS AND SPARSITY XVIII | 2019年 / 11138卷
关键词
wavelets; multiple testing; correlation; graph inference; FUNCTIONAL CONNECTIVITY; BRAIN NETWORKS; TIME-SERIES; ESTIMATOR; MRI;
D O I
10.1117/12.2529193
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Graph-based representation enables to outline efficiently interactions between sensors and as such has encountered a growing interest. For example in neurosciences, the graph of interactions between brain regions has shed lights on evolution of diseases. In this paper, we describe a whole procedure which estimates the graph from multivariate time series. First correlations using wavelet decomposition of the signals are estimated. Bonferroni (1935)'s procedure on multiple correlation testing is then used. We prove theoretically that the Family Wise Error Rate (FWER) is asymptotically controlled for any graph structures. We implement our approach on small-world graph structures, with signals possibly having long-memory properties. This structure is inspired by real data examples from resting-state functional magnetic resonance imaging. The control is confirmed graphically. Numerical simulations illustrate the behavior of the bias and the power of our proposed approach.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] EEG analysis using wavelet-based information tools
    Rosso, O. A.
    Martin, M. T.
    Figliola, A.
    Keller, K.
    Plastino, A.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2006, 153 (02) : 163 - 182
  • [32] Wavelet-based image interpolation using multilayer perceptrons
    Huang, YL
    [J]. NEURAL COMPUTING & APPLICATIONS, 2005, 14 (01): : 1 - 10
  • [33] Gearbox Diagnostics Using Wavelet-Based Windowing Technique
    Omar, Farag K.
    Gaouda, A. M.
    [J]. 7TH INTERNATIONAL CONFERENCE ON MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS, 2009, 181
  • [34] Wavelet-based Contourlet Coding Using SPECK Algorithm
    Tian Xiu-wei
    Zheng Xi-feng
    Ding Tie-fu
    [J]. ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1204 - 1207
  • [35] Image Registration Using Wavelet-Based Motion Model
    Yu-Te Wu
    Takeo Kanade
    Ching-Chung Li
    Jeffrey Cohn
    [J]. International Journal of Computer Vision, 2000, 38 : 129 - 152
  • [36] Metal artifact suppression using wavelet-based reconstructions
    Zhao, S
    Robertson, DD
    Wang, G
    Whiting, BR
    Bae, KT
    [J]. RADIOLOGY, 1999, 213P : 452 - 453
  • [37] Wavelet-based image interpolation using multilayer perceptrons
    Yu-Len Huang
    [J]. Neural Computing & Applications, 2005, 14 : 1 - 10
  • [38] Distance protection using a wavelet-based filtering algorithm
    Silva, Kleber M.
    Neves, Washington L. A.
    Souza, Benemar A.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2010, 80 (01) : 84 - 90
  • [39] Correspondence detection using wavelet-based attribute vectors
    Xue, Z
    Shen, DG
    Davatzikos, C
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 2, 2003, 2879 : 762 - 770
  • [40] Wavelet-based denoising using hidden Markov models
    Borran, MJ
    Nowak, RD
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 3925 - 3928