Complex Fermi-Pasta-Ulam recurrence and the problem of information storage in a neuron

被引:0
|
作者
Berezin, AA
Garber, M
Shcheglov, VA
机构
[1] Oil & Gas Res Inst, Moscow 117924, Russia
[2] PN Lebedev Phys Inst, Moscow 117924, Russia
关键词
D O I
10.1007/BF03380165
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A qualitative model of a neuron was studied theoretically and experimentally. A coupled system of nonlinear Schrodinger (NLS) and sine-Gordon equations was used for mathematical description of the complex Fermi-Pasta-Ulam recurrence interpreted as a principal information carrier in the model. Computer and analog experiments were devised to verify the proposed concept.
引用
收藏
页码:194 / 209
页数:16
相关论文
共 50 条
  • [21] The development of truncated inviscid turbulence and the Fermi-Pasta-Ulam problem
    Ooms, G.
    Boersma, B. J.
    CHAOS, 2008, 18 (04)
  • [22] Soliton theory and the Fermi-Pasta-Ulam problem in the thermodynamic limit
    Ponno, A
    EUROPHYSICS LETTERS, 2003, 64 (05): : 606 - 612
  • [23] The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics
    Benettin, G.
    Christodoulidi, H.
    Ponno, A.
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (02) : 195 - 212
  • [24] Biphonons in the β-Fermi-Pasta-Ulam model
    Ivic, Zoran
    Tsironis, G. P.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 200 - 206
  • [25] Introduction: The Fermi-Pasta-Ulam problem - The first fifty years
    Campbell, DK
    Rosenau, P
    Zaslavsky, GM
    CHAOS, 2005, 15 (01)
  • [26] From Fermi-Pasta-Ulam problem to galaxies: The quest for relaxation
    Allahverdyan, AE
    Gurzadyan, VG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2002, 117 (9-11): : 947 - 964
  • [27] Low-energy chaos in the Fermi-Pasta-Ulam problem
    Shepelyansky, DL
    NONLINEARITY, 1997, 10 (05) : 1331 - 1338
  • [28] Fermi-Pasta-Ulam auto recurrence in the description of the electrical activity of the heart
    Novopashin, M. A.
    Shmid, A. V.
    Berezin, A. A.
    MEDICAL HYPOTHESES, 2017, 101 : 12 - 16
  • [29] Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence
    O. Kimmoun
    H. C. Hsu
    H. Branger
    M. S. Li
    Y. Y. Chen
    C. Kharif
    M. Onorato
    E. J. R. Kelleher
    B. Kibler
    N. Akhmediev
    A. Chabchoub
    Scientific Reports, 6
  • [30] A Numerical Method for Solving the Nonlinear Fermi-Pasta-Ulam Problem
    Ren, Jincheng
    Sun, Zhi-zhong
    Cao, Hai-yan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (01) : 187 - 209