Centres of monoidal categories of functors

被引:0
|
作者
Day, Brian [1 ]
Street, Ross [2 ]
机构
[1] Univ Sydney, Sydney, NSW 2006, Australia
[2] Macquarie Univ, N Ryde, NSW 2109, Australia
关键词
monoidal category; braiding; centre; promonad; promonoidal category; Hopf algebra; fibration; convolution; Kleisli construction; enriched category;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper explores when the (lax) centre of a closed monoidal (enriched) functor category is again a functor category. For some of this, we exploit the Kleisli construction in the bicategory of modules between enriched categories. We look at (lax) centres of reflective full subcategories of monoidal functor categories. A result is obtained concerning the centre of the pointwise tensor product structure on the category of functors from a groupoid to a wide class of monoidal categories.
引用
收藏
页码:187 / +
页数:3
相关论文
共 50 条
  • [21] Adjointable monoidal functors and quantum groupoids
    Szlachanyi, K
    HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 291 - 307
  • [22] Monoidal functors, graphs, and field algebras
    Kim, Namhoon
    JOURNAL OF ALGEBRA, 2015, 429 : 371 - 412
  • [23] ARROW CATEGORIES OF MONOIDAL MODEL CATEGORIES
    White, David
    Yau, Donald
    MATHEMATICA SCANDINAVICA, 2019, 125 (1-2) : 185 - 198
  • [24] The monoidal structure on strict polynomial functors
    Aquilino, Cosima
    Reischuk, Rebecca
    JOURNAL OF ALGEBRA, 2017, 485 : 213 - 229
  • [25] Monoidal categories and multiextensions
    Breen, L
    COMPOSITIO MATHEMATICA, 1999, 117 (03) : 295 - 335
  • [26] GRADED MONOIDAL CATEGORIES
    FROHLICH, A
    WALL, CTC
    COMPOSITIO MATHEMATICA, 1974, 28 (03) : 229 - 285
  • [27] TRACES IN MONOIDAL CATEGORIES
    Stolz, Stephan
    Teichner, Peter
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (08) : 4425 - 4464
  • [28] ON INVOLUTIVE MONOIDAL CATEGORIES
    Egger, J. M.
    THEORY AND APPLICATIONS OF CATEGORIES, 2011, 25 : 368 - U528
  • [29] Iterated monoidal categories
    Balteanu, C
    Fiedorowicz, Z
    Schwänzl, R
    Vogt, R
    ADVANCES IN MATHEMATICS, 2003, 176 (02) : 277 - 349
  • [30] Space in Monoidal Categories
    Moliner, Pau Enrique
    Heunen, Chris
    Tull, Sean
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2018, (266): : 399 - 410