Semi-Supervised Learning for Classification with Uncertainty

被引:1
|
作者
Zhang, Rui [1 ]
Liu, Tong-bo [1 ]
Zheng, Ming-wen [1 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo, Peoples R China
来源
MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8 | 2012年 / 433-440卷
关键词
SVM; (SVM)-V-3; classification;
D O I
10.4028/www.scientific.net/AMR.433-440.3584
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Support vector machine (SVM) is a general and powerful learning machine, which adopts supervised manner. However, for many practical machine learning and data mining applications, unlabeled training examples are readily available but labeled ones are very expensive to be obtained. Therefore, semi-supervised learning emerges as the times require. At present, the combination of SVM and semi-supervised learning ((SVM)-V-3) has attracted more and more attentions. In general, (SVM)-V-3 deals with problems with small training sets and large working sets. When the training set is large relative to the working set, We propose a new SVM model to solve the above classification problem by introducing the fuzzy memberships to each unlabeled point. Simulation results demonstrate that the proposed method can exploit unlabeled data to yield good performance effectively.
引用
收藏
页码:3584 / 3590
页数:7
相关论文
共 50 条
  • [21] Using semi-supervised learning for question classification
    Tri, Nguyen Thanh
    Le, Nguyen Minh
    Shimazu, Akira
    COMPUTER PROCESSING OF ORIENTAL LANGUAGES, PROCEEDINGS: BEYOND THE ORIENT: THE RESEARCH CHALLENGES AHEAD, 2006, 4285 : 31 - +
  • [22] Extreme semi-supervised learning for multiclass classification
    Chen, Chuangquan
    Gan, Yanfen
    Vong, Chi-Man
    NEUROCOMPUTING, 2020, 376 : 103 - 118
  • [23] Semi-Supervised Text Classification With Universum Learning
    Liu, Chien-Liang
    Hsaio, Wen-Hoar
    Lee, Chia-Hoang
    Chang, Tao-Hsing
    Kuo, Tsung-Hsun
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (02) : 462 - 473
  • [24] Participatory Learning based Semi-supervised Classification
    Deng, Chao
    Guo, Mao-Zu
    Liu, Yang
    Li, Hai-Feng
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2008, : 207 - 216
  • [25] News Classification with Semi-Supervised and Active Learning
    Guo C.
    Chao Y.
    Data Analysis and Knowledge Discovery, 2022, 6 (04) : 28 - 38
  • [26] Malware Classification Based on Semi-Supervised Learning
    Ding, Yu
    Zhang, XiaoYu
    Li, BinBin
    Xing, Jian
    Qiang, Qian
    Qi, ZiSen
    Guo, MengHan
    Jia, SiYu
    Wang, HaiPing
    SCIENCE OF CYBER SECURITY, SCISEC 2022, 2022, 13580 : 287 - 301
  • [27] Semi-supervised learning for Bayesian pattern classification
    Center, JL
    Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2005, 803 : 517 - 524
  • [28] Spectral Kernel Learning for Semi-Supervised Classification
    Liu, Wei
    Qian, Buyue
    Cui, Jingyu
    Liu, Jianzhuang
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1150 - 1155
  • [29] Deep graph learning for semi-supervised classification
    Lin, Guangfeng
    Kang, Xiaobing
    Liao, Kaiyang
    Zhao, Fan
    Chen, Yajun
    PATTERN RECOGNITION, 2021, 118
  • [30] A NOVEL SEMI-SUPERVISED LEARNING FOR SMS CLASSIFICATION
    Ahmed, Ishtiaq
    Guan, Donghai
    Chung, Teachoong
    PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2014, : 856 - 861