Nontrivial solutions for a nonlinear Schrodinger equation with nonsymmetric coefficients

被引:4
|
作者
Wang, Xiaoping [1 ]
Liao, Fangfang [1 ]
机构
[1] Xiangnan Univ, Dept Math, Chenzhou 423000, Hunan, Peoples R China
关键词
Schrodinger equation; Pohozaev identity; Concentration compactness; Cerami sequence; Barycenter; POSITIVE SOLUTION; EXISTENCE;
D O I
10.1016/j.na.2020.111755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to studying the nonlinear Schrodinger equations of the form {-Delta u+lambda u = a(x)f(u), x is an element of R-N ; u is an element of H-1 (R-N), where a is an element of C-1( R-N, [0, infinity)) is nonsymmetric and satisfies a(x) <= (not equivalent to) a(infinity) := lim(vertical bar y vertical bar ->infinity) a(y), and f is an element of C(R, R). By using concentration compactness arguments and projections on a general Pohozaev type manifold, we prove that the above problem has a nontrivial solution under weaker assumptions on a and f than the existing results in literature. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Triki, Houria
    Wazwaz, Abdul-Majid
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 360 - 366
  • [22] Exact chirped gray soliton solutions of the nonlinear Schrodinger equation with variable coefficients
    Wang, Juanfen
    Li, Lu
    Jia, Suotang
    OPTICS COMMUNICATIONS, 2007, 274 (01) : 223 - 230
  • [23] Chirped and chirpfree soliton solutions of generalized nonlinear Schrodinger equation with distributed coefficients
    Kumar, Hitender
    Chand, Fakir
    OPTIK, 2014, 125 (12): : 2938 - 2949
  • [24] On nonlinear perturbations of the Schrodinger equation with discontinuous coefficients
    Jäger, W
    Simon, L
    ACTA MATHEMATICA HUNGARICA, 2003, 98 (03) : 227 - 243
  • [25] Nontrivial on-site soliton solutions for stationary cubic-quintic discrete nonlinear schrodinger equation
    Qausar, Haves
    Ramli, Marwan
    Munzir, Said
    Syafwan, Mahdhivan
    Susanto, Hadi
    Halfiani, Vera
    Ramli, Marwan (marwan.math@unsyiah.ac.id), 1600, International Association of Engineers (50): : 1 - 5
  • [26] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [27] Envelope solutions to nonlinear Schrodinger equation
    Li, XZ
    Zhang, JL
    Wang, YM
    Wang, ML
    ACTA PHYSICA SINICA, 2004, 53 (12) : 4045 - 4051
  • [28] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [29] ANTISYMMETRIC SOLUTIONS FOR THE NONLINEAR SCHRODINGER EQUATION
    Carvalho, Janete S.
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (1-2) : 109 - 134
  • [30] Autoresonant solutions of the nonlinear Schrodinger equation
    Friedland, L
    PHYSICAL REVIEW E, 1998, 58 (03): : 3865 - 3875