Weierstrass representation for timelike surfaces in Minkowski 4-space

被引:1
|
作者
Devald, Davor [1 ]
机构
[1] Fac Civil Engn, Kaciceva 26, Zagreb 10000, Croatia
关键词
Weierstrass representation; Timelike surface; Minimal surface; Conformal parametrization; Lorentz-Minkowski; 4-Space;
D O I
10.1007/s00022-021-00587-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize the Weierstrass representation formula for minimal timelike surfaces in Minkowski 3-space, that was found by S. Lee, for the same surfaces in Minkowski 4-space. We also generalize the representation formula found by M. A. Magid for regular timelike surfaces. As a special case we get another representation formula for minimal timelike surfaces.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Timelike Circular Surfaces and Singularities in Minkowski 3-Space
    Li, Yanlin
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    SYMMETRY-BASEL, 2022, 14 (09):
  • [32] Bjorling problem for timelike surfaces in the Lorentz-Minkowski space
    Chaves, R. M. B.
    Dussan, M. P.
    Magid, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 481 - 494
  • [33] Families of Gauss indicatrices on smooth surfaces in pseudo-spheres in the Minkowski 4-space
    Tari, Farid
    JOURNAL OF SINGULARITIES, 2010, 1 : 116 - 133
  • [34] On the curvatures of timelike circular surfaces in Lorentz-Minkowski space
    Li, Jing
    Yang, Zhichao
    Li, Yanlin
    Abdel-Baky, R. A.
    Saad, M. Khalifa
    FILOMAT, 2024, 38 (04) : 1423 - 1437
  • [35] A study on timelike circular surfaces in Minkowski 3-space
    Abdel-Baky, Rashad A.
    Alluhaibi, Nadia
    Ali, Akram
    Mofarreh, Fatemah
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (06)
  • [36] SOME CLASSIFICATIONS OF LORENTZIAN SURFACES WITH FINITE TYPE GAUSS MAP IN THE MINKOWSKI 4-SPACE
    Turgay, Nurettin Cenk
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (03) : 415 - 427
  • [37] Singularities for Timelike Developable Surfaces in Minkowski 3-Space
    Li, Yanlin
    Chen, Zhizhi
    Nazra, Sahar H. H.
    Abdel-Baky, Rashad A. A.
    SYMMETRY-BASEL, 2023, 15 (02):
  • [38] Surfaces with Parallel Normalized Mean Curvature Vector Field in Euclidean or Minkowski 4-Space
    Ganchev, Georgi
    Milousheva, Velichka
    FILOMAT, 2019, 33 (04) : 1135 - 1145
  • [39] INDECOMPOSABLE SURFACES IN 4-SPACE
    LIVINGSTON, C
    PACIFIC JOURNAL OF MATHEMATICS, 1988, 132 (02) : 371 - 378
  • [40] Rotational hypersurfaces in Lorentz-Minkowski 4-space
    Altin, Mustafa
    Kazan, Ahmet
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (05): : 1409 - 1433