Nonparametric inference for interventional effects with multiple mediators

被引:7
|
作者
Benkeser, David [1 ]
Ran, Jialu [1 ]
机构
[1] Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
mediation; causal inference; augmented inverse probability of treatment weighted estimator; targeted minimum loss estimator; machine learning; CAUSAL INFERENCE;
D O I
10.1515/jci-2020-0018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Understanding the pathways whereby an intervention has an effect on an outcome is a common scientific goal. A rich body of literature provides various decompositions of the total intervention effect into pathway-specific effects. Interventional direct and indirect effects provide one such decomposition. Existing estimators of these effects are based on parametric models with confidence interval estimation facilitated via the nonparametric bootstrap. We provide theory that allows for more flexible, possibly machine learning-based, estimation techniques to be considered. In particular, we establish weak convergence results that facilitate the construction of closed-form confidence intervals and hypothesis tests and prove multiple robustness properties of the proposed estimators. Simulations show that inference based on large-sample theory has adequate small-sample performance. Our work thus provides a means of leveraging modern statistical learning techniques in estimation of interventional mediation effects.
引用
收藏
页码:172 / 189
页数:18
相关论文
共 50 条
  • [21] Multiple imputation methods for nonparametric inference on cumulative incidence with missing cause of failure
    Lee, Minjung
    Dignam, James J.
    Han, Junhee
    STATISTICS IN MEDICINE, 2014, 33 (26) : 4605 - 4626
  • [22] Nonparametric predictive inference for reproducibility of basic nonparametric tests
    Coolen F.P.A.
    Bin Himd S.
    Journal of Statistical Theory and Practice, 2014, 8 (4) : 591 - 618
  • [23] Effects of associated kernels in nonparametric multiple regressions
    Somé S.M.
    Kokonendji C.C.
    Journal of Statistical Theory and Practice, 2016, 10 (2) : 456 - 471
  • [24] GRAPHICAL REPRESENTATION FOR NONPARAMETRIC INFERENCE
    HETTMANSPERGER, TP
    MCKEAN, JW
    AMERICAN STATISTICIAN, 1974, 28 (03): : 100 - 102
  • [25] Nonparametric inference on structural breaks
    Delgado, MA
    Hidalgo, J
    JOURNAL OF ECONOMETRICS, 2000, 96 (01) : 113 - 144
  • [26] Nonparametric predictive inference in reliability
    Coolen, FPA
    Coolen-Schrijner, P
    Yan, KJ
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2002, 78 (02) : 185 - 193
  • [27] Nonparametric inference on mtDNA mismatches
    Banks, D
    Constantine, G
    Merriwether, DA
    LaFrance, R
    JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 11 (1-3) : 215 - 232
  • [28] Nonparametric inference for fractional diffusion
    Saussereau, Bruno
    BERNOULLI, 2014, 20 (02) : 878 - 918
  • [29] ERROR INFERENCE FOR NONPARAMETRIC REGRESSION
    RUTHERFORD, B
    YAKOWITZ, S
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) : 115 - 129
  • [30] Nonparametric Bayesian inference in applications
    Peter Müeller
    Fernando A. Quintana
    Garritt Page
    Statistical Methods & Applications, 2018, 27 : 175 - 206