ISOLATED SINGULARITY FOR SEMILINEAR ELLIPTIC EQUATIONS

被引:10
|
作者
Wei, Lei [1 ]
Feng, Zhaosheng [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
[2] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
关键词
Hardy potential; eigenvalue; super-subsolution method; minimal positive solution; BLOW-UP SOLUTIONS;
D O I
10.3934/dcds.2015.35.3239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of semilinear elliptic equations with the Hardy potential. By means of the super-subsolution method and the comparison principle, we explore the existence of a minimal positive solution and a maximal positive solution. Through a scaling technique, we obtain the asymptotic property of positive solutions near the origin. Finally, the nonexistence of a positive solution is proven when the parameter is larger than a critical value.
引用
收藏
页码:3239 / 3252
页数:14
相关论文
共 50 条
  • [31] Solutions of Semilinear Elliptic Equations in Tubes
    Pacard, Frank
    Pacella, Filomena
    Sciunzi, Berardino
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 445 - 471
  • [32] Semilinear elliptic equations and nonlinearities with zeros
    Barrios, Begona
    Garcia-Melian, Jorge
    Iturriaga, Leonelo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 134 : 117 - 126
  • [33] Semilinear elliptic equations and fixed points
    Barroso, CS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 745 - 749
  • [34] Symmetrization for singular semilinear elliptic equations
    Brandolini, B.
    Chiacchio, F.
    Trombetti, C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (02) : 389 - 404
  • [35] Semilinear elliptic equations with critical nonlinearities
    Tonkes, E
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (01) : 171 - 173
  • [36] A multiscale method for semilinear elliptic equations
    Chen, Peimin
    Allegretto, Walter
    Lin, Yanping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 362 - 371
  • [37] A Concentration Phenomenon for Semilinear Elliptic Equations
    Ackermann, Nils
    Szulkin, Andrzej
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (03) : 1075 - 1089
  • [38] On the Cauchy problem for semilinear elliptic equations
    Nguyen Huy Tuan
    Tran Thanh Binh
    Viet, Tran Quoc
    Lesnic, Daniel
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (02): : 123 - 138
  • [39] Symmetrization for singular semilinear elliptic equations
    B. Brandolini
    F. Chiacchio
    C. Trombetti
    Annali di Matematica Pura ed Applicata, 2014, 193 : 389 - 404
  • [40] Semilinear elliptic equations with singular nonlinearities
    Lucio Boccardo
    Luigi Orsina
    Calculus of Variations and Partial Differential Equations, 2010, 37 : 363 - 380