A Parallel Multi-objective Ab initio Approach for Protein Structure Prediction

被引:0
|
作者
Becerra, David [1 ,2 ]
Sandoval, Angelica [1 ,2 ]
Restrepo-Montoya, Daniel [1 ,2 ]
Nino, Luis F. [1 ,2 ]
机构
[1] Univ Nacl Colombia, Intelligent Syst Res Lab LISI, Bogota, Colombia
[2] Univ Nacl Colombia, Algorithms & Combinator Res Grp ALGOS, Bogota, Colombia
关键词
Bioinformatics; Protein Structure Prediction; Ab-initio methods; Parallel evolutionary computation; Multi-objective optimization; FUNNELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Protein structure prediction is one of the most important problems in bioinformatics and structural biology. This work proposes a novel and suitable methodology to model protein structure prediction with atomic-level detail by using a parallel multi-objective ab initio approach. In the proposed model, i) A trigonometric representation is used to compute backbone and side-chain torsion angles of protein atoms; ii) The Chemistry at HARvard Macromolecular Mechanics (CHARMm) function optimizes and evaluates the structures of the protein conformations; iii) The evolution of protein conformations is directed by optimization of protein energy contributions using the multi-objective genetic algorithm NSGA-II; and iv) The computation process is sped up and its effectiveness improved through the implementation of an island model of the evolutionary algorithm. The proposed model was validated on a set of benchmark proteins obtaining very promising results.
引用
收藏
页码:137 / 141
页数:5
相关论文
共 50 条
  • [31] Parallel multi-objective optimization approaches for protein encoding
    Gonzalez-Sanchez, Belen
    Vega-Rodriguez, Miguel A.
    Santander-Jimenez, Sergio
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (04): : 5118 - 5148
  • [32] GACO: A Parallel Evolutionary Approach to Multi-objective Scheduling
    Rudy, Jaroslaw
    Zelazny, Dominik
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT I, 2015, 9018 : 307 - 320
  • [33] A Multi-objective Approach to the Protein Structure Prediction Problem using the Biased Random-Key Genetic Algorithm
    Marchi, Felipe
    Parpinelli, Rafael Stubs
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1070 - 1077
  • [34] Ab initio protein structure prediction and a comparative genetic algorithm
    Gregurick, S
    Pedersen, J
    Moult, J
    BIOPHYSICAL JOURNAL, 1999, 76 (01) : A382 - A382
  • [35] An Enhanced Genetic Algorithm for Ab Initio Protein Structure Prediction
    Rashid, Mahmood A.
    Khatib, Firas
    Hoque, Md Tamjidul
    Sattar, Abdul
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (04) : 627 - 644
  • [36] Ab initio protein structure prediction using pathway models
    Yuan, X
    Shao, Y
    Bystroff, C
    COMPARATIVE AND FUNCTIONAL GENOMICS, 2003, 4 (04): : 397 - 401
  • [37] Principles, Challenges and Advances in ab initio Protein Structure Prediction
    Jothi, Arunachalam
    PROTEIN AND PEPTIDE LETTERS, 2012, 19 (11): : 1194 - 1204
  • [38] Performance comparison of ab initio protein structure prediction methods
    Yousef, Mohamad
    Abdelkader, Tamer
    El-Bahnasy, Khaled
    AIN SHAMS ENGINEERING JOURNAL, 2019, 10 (04) : 713 - 719
  • [39] A parallel multiple reference point approach for multi-objective optimization
    Figueira, J. R.
    Liefooghe, A.
    Talbi, E. -G.
    Wierzbicki, A. P.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 205 (02) : 390 - 400
  • [40] Incorporation of Solvent Effect into Multi-Objective Evolutionary Algorithm for Improved Protein Structure Prediction
    Gao, Shangce
    Song, Shuangbao
    Cheng, Jiujun
    Todo, Yuki
    Zhou, Mengchu
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (04) : 1365 - 1378