Non-Hermitean Wishart random matrices (I)

被引:18
|
作者
Kanzieper, Eugene [1 ,2 ]
Singh, Navinder [1 ,3 ]
机构
[1] HIT Holon Inst Technol, Dept Appl Math, IL-58102 Holon, Israel
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[3] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
基金
以色列科学基金会;
关键词
FINANCIAL TIME-SERIES; CROSS-CORRELATIONS; ENSEMBLES; SPECTRA; NOISE; QCD; LAW;
D O I
10.1063/1.3483455
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A non-Hermitean extension of paradigmatic Wishart random matrices is introduced to set up a theoretical framework for statistical analysis of (real, complex, and real-quaternion) stochastic time series representing two "remote" complex systems. The first paper in a series provides a detailed spectral theory of non-Hermitean Wishart random matrices composed of complex valued entries. The great emphasis is placed on an asymptotic analysis of the mean eigenvalue density for which we derive, among other results, a complex-plane analog of the Marcenko-Pastur law. A surprising connection with a class of matrix models previously invented in the context of quantum chromodynamics is pointed out. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3483455]
引用
下载
收藏
页数:28
相关论文
共 50 条
  • [41] HERMITEAN CLASSIFICATION OF MATRICES - PRELIMINARY REPORT
    VINOGRADE, B
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (04) : 356 - 356
  • [42] THE PARTIAL TRANSPOSE AND ASYMPTOTIC FREE INDEPENDENCE FOR WISHART RANDOM MATRICES, II
    Mingo, James A.
    Popa, Mihai
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 317 (02) : 387 - 421
  • [43] Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers
    Fridman, Moti
    Pugatch, Rami
    Nixon, Micha
    Friesem, Asher A.
    Davidson, Nir
    PHYSICAL REVIEW E, 2012, 85 (02):
  • [44] Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to beta random matrices
    Capitaine, M
    Casalis, M
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) : 397 - 431
  • [45] ON THE MOMENTS OF TRACES OF WISHART AND INVERTED WISHART MATRICES
    WATAMORI, Y
    SOUTH AFRICAN STATISTICAL JOURNAL, 1990, 24 (02) : 153 - 176
  • [46] HOMOGENEOUS DISTRIBUTIONS ON SPACES OF HERMITEAN MATRICES
    RICCI, F
    STEIN, EM
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1986, 368 : 142 - 164
  • [47] The quantum way to diagonalize hermitean matrices
    Weigert, S
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (2-3): : 249 - 254
  • [48] Spectral densities of Wishart-L,vy free stable random matrices
    Politi, M.
    Scalas, E.
    Fulger, D.
    Germano, G.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 73 (01): : 13 - 22
  • [49] Extreme Eigenvalue Distributions of Finite Random Wishart Matrices with Application to Spectrum Sensing
    Abreu, Giuseppe
    Zhang, Wensheng
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 1731 - 1736
  • [50] Nonintersecting Brownian interfaces and Wishart random matrices (vol 79, 061117, 2009)
    Nadal, Celine
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2009, 80 (01):