Strongly nonlinear envelope soliton in a lattice model for periodic structure

被引:24
|
作者
Yagi, D [1 ]
Kawahara, T [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Aeronaut & Astronaut, Kyoto 6068501, Japan
关键词
nonlinear wave; Toda lattice model; nonlinear envelope soliton;
D O I
10.1016/S0165-2125(01)00062-2
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonlinear waves in a periodic structure are investigated numerically in terms of a modified Toda lattice model incorporating external linear elastic effect. The inclusion of the external linear elasticity causes a drastic change in wave properties, i.e. the wave packets, whose wavenumbers are determined by the relative importance of the external force to the internal force, play central roles instead of the Toda soliton. Numerically observed wave packets are well described by the nonlinear Schrodinger equation for weakly nonlinear regime, but an up-and-down asymmetry develops in the envelope for strongly nonlinear regime. The head-on collisions of such strongly nonlinear wave packets show their solitonic properties and that they can be considered as strongly nonlinear envelope solitons having an up-acid-down asymmetry in amplitude. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [41] Active TM mode envelope soliton propagation in a nonlinear nernatic waveguide
    Reimbert, CG
    Garza-Hume, CE
    Minzoni, AA
    Smyth, NF
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 167 (3-4) : 136 - 152
  • [42] AVERAGING METHOD FOR STRONGLY NONLINEAR OSCILLATORS WITH PERIODIC EXCITATIONS
    ROY, RV
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1994, 29 (05) : 737 - 753
  • [43] A NEW METHOD FOR THE PERIODIC SOLUTION OF STRONGLY NONLINEAR SYSTEMS
    张正平
    李骊
    朱如曾
    霍麟春
    [J]. Acta Mechanica Sinica, 1994, (01) : 82 - 90
  • [44] OBSERVATION OF ENVELOPE SOLITON PROPAGATION IN A NEW NONLINEAR TRANSMISSION-LINE
    DRAGOMAN, M
    CATOIU, M
    [J]. APPLIED PHYSICS LETTERS, 1989, 54 (15) : 1472 - 1473
  • [45] Primary pulse transmission in a strongly nonlinear periodic system
    Pilipchuk, VN
    Azeez, MAF
    Vakakis, AF
    [J]. NONLINEAR DYNAMICS, 1996, 11 (01) : 61 - 81
  • [46] Solution to the periodic vibration of strongly nonlinear symmetric oscillators
    Huang, Cheng-Biao
    Jin, Xiang-Peng
    Wu, Hua-Dong
    [J]. Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2002, 41 (01):
  • [47] SOLITON DYNAMICS IN THE INCOMMENSURATE PHASE OF A VORTEX LATTICE PINNED BY A PERIODIC POTENTIAL
    RACINE, GA
    JEANNERET, B
    BECK, H
    MARTINOLI, P
    [J]. HELVETICA PHYSICA ACTA, 1986, 59 (6-7): : 953 - 953
  • [48] Different discrete soliton states in periodic optical induced waveguide lattice
    Zhou, Jun
    Qi, Yihong
    Xue, Chunhua
    Lou, Senyue
    Fang, Yuntuan
    [J]. OPTICS EXPRESS, 2007, 15 (10): : 6232 - 6240
  • [49] Certain aspects of the acoustics of a strongly nonlinear discrete lattice
    Mojahed, Alireza
    Vakakis, Alexander F.
    [J]. NONLINEAR DYNAMICS, 2020, 99 (01) : 643 - 659
  • [50] Attractor for a strongly damped lattice system with nonlinear damping
    Li, Hongyan
    Rui, Zhang
    [J]. 2018 IEEE 15TH INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE 2018), 2018, : 300 - 305