Probing the gravitational wave background from cosmic strings with LISA

被引:191
|
作者
Auclair, Pierre [1 ]
Blanco-Pillado, Jose J. [2 ,3 ]
Figueroa, Daniel G. [4 ,5 ]
Jenkins, Alexander C. [6 ]
Lewicki, Marek [6 ,7 ]
Sakellariadou, Mairi [6 ]
Sanidas, Sotiris [8 ]
Sousa, Lara [9 ,10 ]
Steer, Daniele A. [1 ]
Wachter, Jeremy M. [3 ]
Kuroyanagi, Sachiko [11 ]
机构
[1] Univ Paris, Lab Astroparticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, Paris 75013, France
[2] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[3] Univ Basque Country, Dept Theoret Phys, Bilbao 48080, Spain
[4] Ecole Polytech Fed Lausanne, Lab Particle Phys & Cosmol LPPC, Inst Phys, CH-1015 Lausanne, Switzerland
[5] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia, Spain
[6] Univ London, Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England
[7] Univ Warsaw, Fac Phys, Ul Pasteura 5, Warsaw 02093, Poland
[8] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England
[9] Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas, PT-4150762 Porto, Portugal
[10] Univ Porto, Ctr Astrofis, Rua Estrelas, PT-4150762 Porto, Portugal
[11] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan
基金
瑞士国家科学基金会;
关键词
Cosmic strings; domain walls; monopoles; gravitational waves / sources; physics of the early universe; primordial gravitational waves (theory); SMALL-SCALE STRUCTURE; RADIATION; EVOLUTION; SPECTRUM; CONSTRAINTS; KINKY; DECAY;
D O I
10.1088/1475-7516/2020/04/034
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the properties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions G mu greater than or similar to O(10(-17)), improving by about 6 orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially 3 orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISA's frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
引用
收藏
页数:50
相关论文
共 50 条
  • [31] Improved reconstruction of a stochastic gravitational wave background with LISA
    Flauger, Raphael
    Karnesis, Nikolaos
    Nardini, Germano
    Pieroni, Mauro
    Ricciardone, Angelo
    Torrado, Jesus
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (01):
  • [32] Cosmic archaeology with gravitational waves from cosmic strings
    Cui, Yanou
    Lewicki, Marek
    Morrissey, David E.
    Wells, James D.
    [J]. PHYSICAL REVIEW D, 2018, 97 (12)
  • [33] Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release
    Chen, Zu-Cheng
    Wu, Yu-Mei
    Huang, Qing-Guo
    [J]. ASTROPHYSICAL JOURNAL, 2022, 936 (01):
  • [34] Measuring the primordial gravitational waves from cosmic microwave background and stochastic gravitational wave background observations
    Li, Jun
    Guo, Guang-Hai
    [J]. MODERN PHYSICS LETTERS A, 2022, 37 (10)
  • [35] COSMIC VARIANCE IN THE NANOHERTZ GRAVITATIONAL WAVE BACKGROUND
    Roebber, Elinore
    Holder, Gilbert
    Holz, Daniel E.
    Warren, Michael
    [J]. ASTROPHYSICAL JOURNAL, 2016, 819 (02):
  • [36] THE PREGALACTIC COSMIC GRAVITATIONAL-WAVE BACKGROUND
    MATZNER, RA
    [J]. RELATIVISTIC GRAVITATIONAL EXPERIMENTS IN SPACE, 1989, 3046 : 25 - 37
  • [37] Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows
    Damour, T
    Vilenkin, A
    [J]. PHYSICAL REVIEW D, 2005, 71 (06): : 1 - 13
  • [38] Reconstructing the spectral shape of a stochastic gravitational wave background with LISA
    Caprini, Chiara
    Figueroa, Daniel G.
    Flauger, Raphael
    Nardini, Germano
    Peloso, Marco
    Pieroni, Mauro
    Ricciardone, Angelo
    Tasinato, Gianmassimo
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (11):
  • [39] Probing the cosmic opacity from future gravitational wave standard sirens
    Zhou, Lu
    Fu, Xiangyun
    Peng, Zhaohui
    Chen, Jun
    [J]. PHYSICAL REVIEW D, 2019, 100 (12)
  • [40] Gravitational wave signatures from kink proliferation on cosmic (super-) strings
    Binetruy, P.
    Bohe, A.
    Hertog, T.
    Steer, D. A.
    [J]. PHYSICAL REVIEW D, 2010, 82 (12):