Multivariant Optimization Algorithm for the 0-1 Knapsack Problem

被引:1
|
作者
Liu Lan Juan [1 ]
Li Bao Lei [1 ]
Zhang Qin Hu [1 ]
Lv Dan Jv [1 ]
Shi Xin Lin [1 ]
Li Jing Jing [1 ]
机构
[1] Yunnan Univ, Dept Elect Engn, Informat Sch, Kunming 650091, Yunnan, Peoples R China
关键词
Knapsack problem; Multivariant optimization algorithm; Multivariant search groups; Global exploration; Local exploration;
D O I
10.4028/www.scientific.net/AMM.556-562.3514
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel heuristic algorithm named Multivariant Optimization Algorithm (MOA) is presented to solve the 0-1 Knapsack Problem (KP). In MOA, multivariant search groups (locate and global search groups) execute the global exploration and local exploitation iteratively to locate the optimal solution automatically. The presented algorithm has been compared with Genetic Algorithm (GA) and Particle swarm algorithm (PSO) based on five data sets, results show that the optimization of MOA is better than GA and PSO when the dimension of problem is high.
引用
收藏
页码:3514 / 3518
页数:5
相关论文
共 50 条
  • [31] COLLAPSING 0-1 KNAPSACK PROBLEM
    POSNER, ME
    GUIGNARD, M
    [J]. MATHEMATICAL PROGRAMMING, 1978, 15 (02) : 155 - 161
  • [32] THE MULTIDIMENSIONAL 0-1 KNAPSACK PROBLEM A New Heuristic Algorithm Combined with 0-1 Linear Programming
    Csebfalvi, Aniko
    Csebfalvi, Gyorgy
    [J]. ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011, : 203 - 207
  • [33] Solving 0-1 knapsack problem by artificial chemical reaction optimization algorithm with a greedy strategy
    Tung Khac Truong
    Li, Kenli
    Xu, Yuming
    Ouyang, Aijia
    Tien Trong Nguyen
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (05) : 2179 - 2186
  • [34] An improved group theory-based optimization algorithm for discounted 0-1 knapsack problem
    Ran Wang
    Zichao Zhang
    Wing W. Y. Ng
    Wenhui Wu
    [J]. Advances in Computational Intelligence, 2021, 1 (5):
  • [35] Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem
    Yanhong Feng
    Gai-Ge Wang
    Wenbin Li
    Ning Li
    [J]. Neural Computing and Applications, 2018, 30 : 3019 - 3036
  • [36] Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem
    Feng, Yanhong
    Wang, Gai-Ge
    Li, Wenbin
    Li, Ning
    [J]. NEURAL COMPUTING & APPLICATIONS, 2018, 30 (10): : 3019 - 3036
  • [37] ALGORITHMUS 47 - AN ALGORITHM FOR THE SOLUTION OF THE 0-1 KNAPSACK-PROBLEM
    FAYARD, D
    PLATEAU, G
    [J]. COMPUTING, 1982, 28 (03) : 269 - 287
  • [38] Solving 0-1 Knapsack Problem using Cohort Intelligence Algorithm
    Kulkarni, Anand J.
    Shabir, Hinna
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2016, 7 (03) : 427 - 441
  • [39] Solution of 0-1 knapsack problem applying improved CSA algorithm
    Wang, Lian-Hong
    Zhang, Jing
    Gong, Gu-Feng
    He, Zhao-Hui
    [J]. Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2009, 36 (03): : 81 - 84
  • [40] A parallel Tabu Search algorithm for the 0-1 Multidimensional Knapsack Problem
    Niar, S
    Freville, A
    [J]. 11TH INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM, PROCEEDINGS, 1997, : 512 - 516