Gaussian Processes for SOLPS Data Emulation

被引:5
|
作者
Preuss, R. [1 ]
von Toussaint, U. [1 ]
机构
[1] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
关键词
Gaussian process; emulation; SOLPS;
D O I
10.13182/FST15-178
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Computer codes modeling plasma-wall interactions of fusion plasmas are costly in computer power and time the running time for a single parameter setting is easily on the order of weeks or months, not to mention the expenditure for parametric studies. We propose to exploit the already gathered results in order to predict the outcome in the high-dimensional parameter space. For this, we utilize the Gaussian process method within the Bayesian framework. Uncertainties of the predictions are provided that point the way to parameter settings of further (expensive) simulations.
引用
收藏
页码:605 / 610
页数:6
相关论文
共 50 条
  • [41] Biomarker discovery in microarray gene expression data with Gaussian processes
    Chu, W
    Ghahramani, Z
    Falciani, F
    Wild, DL
    BIOINFORMATICS, 2005, 21 (16) : 3385 - 3393
  • [42] A Bayesian longitudinal trend analysis of count data with Gaussian processes
    VanSchalkwyk, Samantha
    Jeske, Daniel R.
    Kim, Jane H.
    Martins-Green, Manuela
    BIOMETRICAL JOURNAL, 2022, 64 (01) : 74 - 90
  • [43] Analyzing nonstationary spatial data using piecewise Gaussian processes
    Kim, HM
    Mallick, BK
    Holmes, CC
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 653 - 668
  • [44] Gaussian processes reconstruction of dark energy from observational data
    Ming-Jian Zhang
    Hong Li
    The European Physical Journal C, 2018, 78
  • [45] Filtered Gaussian processes for learning with large data-sets
    Shi, JQ
    Murray-Smith, R
    Titterington, DM
    Pearlmutter, BA
    SWITCHING AND LEARNING IN FEEDBACK SYSTEMS, 2005, 3355 : 128 - 139
  • [46] Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data
    Gal, Yarin
    Chen, Yutian
    Ghahramani, Zoubin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 645 - 654
  • [47] Data-Driven Insights into Labor Progression with Gaussian Processes
    Zhoroev, Tilekbek
    Hamilton, Emily F.
    Warrick, Philip A.
    BIOENGINEERING-BASEL, 2024, 11 (01):
  • [48] Alignment of spatial genomics data using deep Gaussian processes
    Andrew Jones
    F. William Townes
    Didong Li
    Barbara E. Engelhardt
    Nature Methods, 2023, 20 : 1379 - 1387
  • [49] LEARNING PARTICLE SWARMING MODELS FROM DATA WITH GAUSSIAN PROCESSES
    Feng, Jinchao
    Kulick, Charles
    Ren, Yunxiang
    Tang, Sui
    MATHEMATICS OF COMPUTATION, 2024, 93 (349) : 2391 - 2437
  • [50] Gaussian Processes for Data-Efficient Learning in Robotics and Control
    Deisenroth, Marc Peter
    Fox, Dieter
    Rasmussen, Carl Edward
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 408 - 423