Gaussian Processes for SOLPS Data Emulation

被引:5
|
作者
Preuss, R. [1 ]
von Toussaint, U. [1 ]
机构
[1] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
关键词
Gaussian process; emulation; SOLPS;
D O I
10.13182/FST15-178
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Computer codes modeling plasma-wall interactions of fusion plasmas are costly in computer power and time the running time for a single parameter setting is easily on the order of weeks or months, not to mention the expenditure for parametric studies. We propose to exploit the already gathered results in order to predict the outcome in the high-dimensional parameter space. For this, we utilize the Gaussian process method within the Bayesian framework. Uncertainties of the predictions are provided that point the way to parameter settings of further (expensive) simulations.
引用
收藏
页码:605 / 610
页数:6
相关论文
共 50 条
  • [1] Gaussian processes for shock test emulation
    Bonneville, Christophe
    Jenquin, Maxwell
    Londono, Juan
    Kelly, Alex
    Cipolla, Jeffrey
    Earls, Christopher
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 212 (212)
  • [2] Computer Emulation with Nonstationary Gaussian Processes
    Montagna, S.
    Tokdar, S. T.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 26 - 47
  • [3] A localized ensemble of approximate Gaussian processes for fast sequential emulation
    Rumsey, Kellin N.
    Huerta, Gabriel
    Derek Tucker, J.
    STAT, 2023, 12 (01):
  • [4] Multifidelity emulation for the matter power spectrum using Gaussian processes
    Ho, Ming-Feng
    Bird, Simeon
    Shelton, Christian R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (02) : 2551 - 2565
  • [5] Active emulation of computer codes with Gaussian processes Application to remote sensing
    Heestermans Svendsen, Daniel
    Martino, Luca
    Camps-Valls, Gustau
    PATTERN RECOGNITION, 2020, 100
  • [6] A comparison of Gaussian processes and neural networks for computer model emulation and calibration
    Myren, Samuel
    Lawrence, Earl
    STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (06) : 606 - 623
  • [7] GAUSSIAN PROCESS EMULATION FOR BIG DATA IN DATA-DRIVEN METAMATERIALS DESIGN
    Bostanabad, Ramin
    Chan, Yu-Chin
    Wang, Liwei
    Zhu, Ping
    Chen, Wei
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2A, 2020,
  • [8] Data fusion with Gaussian processes
    Vasudevan, Shrihari
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2012, 60 (12) : 1528 - 1544
  • [9] Data Association with Gaussian Processes
    Kaiser, Markus
    Otte, Clemens
    Runkler, Thomas A.
    Ek, Carl Henrik
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 548 - 564
  • [10] Fast emulation of density functional theory simulations using approximate Gaussian processes
    Stetzler, Steven
    Grosskopf, Michael
    Lawrence, Earl
    APPLICATIONS OF MACHINE LEARNING 2022, 2022, 12227